Lithium Plating Mechanism, Detection, and Mitigation in Lithium-Ion Batteries

锂(药物) 电镀(地质) 阳极 分离器(采油) 材料科学 锂离子电池 电池(电) 纳米技术 化学 电极 工艺工程 工程类 功率(物理) 内分泌学 物理化学 地质学 物理 热力学 医学 量子力学 地球物理学
作者
Xianke Lin,Kavian Khosravinia,Xiaosong Hu,Ju Li,Wei Lu
出处
期刊:Progress in Energy and Combustion Science [Elsevier]
卷期号:87: 100953-100953 被引量:115
标识
DOI:10.1016/j.pecs.2021.100953
摘要

The success of electric vehicles depends largely on energy storage systems. Lithium-ion batteries have many important properties to meet a wide range of requirements, especially for the development of electric mobility. However, there are still many issues facing lithium-ion batteries. One of the issues is the deposition of metallic lithium on the anode graphite surface under fast charging or low-temperature conditions. Lithium plating reduces the battery life drastically and limits the fast-charging capability. In severe cases, lithium plating forms lithium dendrite, which penetrates the separator and causes internal short. Significant research efforts have been made over the last two decades to understand the lithium plating mechanisms. However, the lithium plating mechanisms have not yet been fully elucidated. Meanwhile, another challenge in the development of fast charging technologies is to identify degradation mechanisms in real-time. This includes real-time detection of lithium plating while the battery is being charged. Accurate detection and prediction of lithium plating are critical for fast charging technologies. Many approaches have been proposed to mitigate lithium plating, such as adopting advanced material components and introducing hybrid and optimized charging protocols. Nevertheless, most detection techniques and mitigation strategies are only used for fundamental research with limited possibilities in large-scale applications. To date, there is still a lack of a comprehensive review of lithium plating, reflecting state of the art and elucidating potential future research directions. Therefore, in this article, we provide a snapshot of recent advances in lithium plating research in terms of mechanism, detection, and mitigation to fill this gap and incentivize more innovative thoughts and techniques. In the present study, the mechanisms of lithium plating and approaches used to characterize and detect it in different applications are carefully reviewed. This review also provides a summary of recent advances in model-based approaches to predict lithium plating. Based on the gathered information, the advantages and drawbacks of each model are compared. The mitigation strategies for suppressing lithium plating at different levels are studied. Finally, we highlighted some of the remaining technical challenges and potential solutions for future advancement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
4秒前
酷波er应助Feng143采纳,获得10
5秒前
玺烊烊发布了新的文献求助30
6秒前
酷酷菲音发布了新的文献求助10
6秒前
刘春艳发布了新的文献求助10
7秒前
shulao完成签到 ,获得积分10
9秒前
默默的问玉完成签到,获得积分10
13秒前
15秒前
16秒前
20秒前
沉默幻天发布了新的文献求助10
22秒前
pathway完成签到,获得积分10
24秒前
wangjingli666应助波奇酱采纳,获得30
25秒前
sda发布了新的文献求助10
27秒前
28秒前
烦恼全吴完成签到,获得积分10
29秒前
kaier完成签到 ,获得积分10
30秒前
朴素海亦发布了新的文献求助10
35秒前
追寻远山完成签到,获得积分20
39秒前
汉堡包应助stuckinrain采纳,获得10
39秒前
FashionBoy应助暴躁的血茗采纳,获得10
40秒前
44秒前
无花果应助QYF采纳,获得10
46秒前
47秒前
着急的无招完成签到,获得积分10
49秒前
慕青应助老流氓采纳,获得10
51秒前
曾雪玲发布了新的文献求助10
53秒前
健忘数据线完成签到 ,获得积分10
54秒前
56秒前
yg完成签到 ,获得积分10
56秒前
释怀发布了新的文献求助30
59秒前
棉花糖完成签到 ,获得积分10
1分钟前
华仔应助yolk采纳,获得10
1分钟前
1分钟前
有害学术辣鸡完成签到 ,获得积分10
1分钟前
AZL泠完成签到 ,获得积分10
1分钟前
文瑄完成签到 ,获得积分10
1分钟前
123完成签到 ,获得积分10
1分钟前
高分求助中
The three stars each: the Astrolabes and related texts 1100
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Psychological Warfare Operations at Lower Echelons in the Eighth Army, July 1952 – July 1953 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2428529
求助须知:如何正确求助?哪些是违规求助? 2114038
关于积分的说明 5359330
捐赠科研通 1841973
什么是DOI,文献DOI怎么找? 916706
版权声明 561476
科研通“疑难数据库(出版商)”最低求助积分说明 490317