Inverse Reinforcement Learning for Adversarial Apprentice Games

计算机科学 强化学习 反向 对抗制 人工智能 过程(计算) 弹道 功能(生物学) 数学优化 学徒制 人工神经网络 机器学习 算法 数学 生物 哲学 物理 操作系统 天文 进化生物学 语言学 几何学
作者
Bosen Lian,Wenqian Xue,Frank L. Lewis,Tianyou Chai
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (8): 4596-4609 被引量:34
标识
DOI:10.1109/tnnls.2021.3114612
摘要

This article proposes new inverse reinforcement learning (RL) algorithms to solve our defined Adversarial Apprentice Games for nonlinear learner and expert systems. The games are solved by extracting the unknown cost function of an expert by a learner using demonstrated expert's behaviors. We first develop a model-based inverse RL algorithm that consists of two learning stages: an optimal control learning and a second learning based on inverse optimal control. This algorithm also clarifies the relationships between inverse RL and inverse optimal control. Then, we propose a new model-free integral inverse RL algorithm to reconstruct the unknown expert cost function. The model-free algorithm only needs online demonstration of the expert and learner's trajectory data without knowing system dynamics of either the learner or the expert. These two algorithms are further implemented using neural networks (NNs). In Adversarial Apprentice Games, the learner and the expert are allowed to suffer from different adversarial attacks in the learning process. A two-player zero-sum game is formulated for each of these two agents and is solved as a subproblem for the learner in inverse RL. Furthermore, it is shown that the cost functions that the learner learns to mimic the expert's behavior are stabilizing and not unique. Finally, simulations and comparisons show the effectiveness and the superiority of the proposed algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
尤诺完成签到 ,获得积分10
刚刚
hyfwkd完成签到,获得积分10
刚刚
1秒前
LmyHusband完成签到,获得积分10
1秒前
gqjq完成签到,获得积分0
2秒前
Gilbert完成签到,获得积分20
2秒前
liushuaihao完成签到,获得积分20
2秒前
2秒前
田様应助ZHU采纳,获得10
2秒前
迅速冥王星完成签到,获得积分10
2秒前
冉海琳完成签到,获得积分20
2秒前
mts23xs完成签到,获得积分10
2秒前
Akim应助机智念芹采纳,获得10
2秒前
Orange应助蛋清采纳,获得10
3秒前
3秒前
zyw完成签到,获得积分10
3秒前
yyyyy完成签到,获得积分10
4秒前
TX发布了新的文献求助10
4秒前
封迎松完成签到 ,获得积分10
5秒前
5秒前
糖糖应助111采纳,获得10
5秒前
万能图书馆应助Toby采纳,获得10
6秒前
小凤姑娘完成签到,获得积分10
6秒前
lin完成签到,获得积分10
6秒前
7秒前
orixero应助rudjs采纳,获得10
7秒前
鲨鱼牙齿给鲨鱼牙齿的求助进行了留言
7秒前
量子星尘发布了新的文献求助10
7秒前
huzhennn完成签到,获得积分20
7秒前
科研通AI6应助俏皮的聪展采纳,获得30
8秒前
YZ完成签到,获得积分10
9秒前
陈静发布了新的文献求助10
9秒前
科研通AI2S应助沐言采纳,获得10
9秒前
9秒前
9秒前
10秒前
11秒前
11秒前
lulu完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5082008
求助须知:如何正确求助?哪些是违规求助? 4299523
关于积分的说明 13395840
捐赠科研通 4123323
什么是DOI,文献DOI怎么找? 2258267
邀请新用户注册赠送积分活动 1262566
关于科研通互助平台的介绍 1196568