分解水
异质结
光电流
密度泛函理论
材料科学
光电子学
带隙
带偏移量
化学物理
化学
计算化学
光催化
价带
催化作用
生物化学
作者
Jiachen Wang,Tingsheng Zhou,Yan Zhang,Shuai Chen,Jing Bai,Jinhua Li,Hong Zhu,B. Zhou
标识
DOI:10.1016/j.jcis.2021.05.086
摘要
Photoanode is the key issue for photoelectrocatalytic (PEC) water splitting and organics degradation. However, it always faces several restrictions including severe photocorrosion, low charge separation and transfer efficiencies, poor visible light harvesting, and sluggish interfacial reaction kinetics, which often required a variety of modifications with only low improvements achieved. Herein, a high performance CQDs/TiO2/WO3 photoanode was designed on the basis of density function theory (DFT) alignment of lattice parameters and energy band, and charge distribution. The TiO2/WO3 heterojunction can abate photocorrosion through the hetero-epitaxial growth of TiO2 (0 0 1) on WO3 (0 0 2) for the lattice mismatch <3% eliminating dangling bonds, with high corrosion resistance and photostability of TiO2. As the built-in field constructed by a staggered band alignment structure with the valence band offset (VBO) of 0.51 eV, the photogenerated carriers transfer and separation are promoted dramatically. Through the DFT calculations, the sunlight absorption wavelength can be extended, and the interfacial reaction kinetics can be expedited with the modification of carbon quantum dots (CQDs) on TiO2/WO3, due to the narrower bandgap (Eg) and the accumulation of electrons at TiO2 side. The DFT designed CQDs/TiO2/WO3 photoanode significantly increase photocurrent density from 0.90 to 2.03 mA cm−2 at 1.23 V, charge separation efficiency from 56.3 to 79.2% and charge injection efficiency from 51.2 to 70.4%, and extend light absorption edge from 455 to 463 nm over pristine WO3, with better photostability and lower holes-to-water resistance.
科研通智能强力驱动
Strongly Powered by AbleSci AI