亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Automatic Rail Surface Multi-Flaw Identification Based on a Deep Learning Powered Framework

分类器(UML) 鉴定(生物学) 工程类 人工智能 标识符 提取器 计算机科学 模式识别(心理学) 特征提取 工艺工程 植物 生物 程序设计语言
作者
Zhuang Li,Haoyang Qi,Zijun Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 12133-12143 被引量:40
标识
DOI:10.1109/tits.2021.3109949
摘要

Rails of unhealthy conditions are considered as major targets in the rail surface inspection and this study focuses on inspecting five types of major rail surface flaws, corrugations, defects, the shelling, squats, and grinding marks, via analyzing railway images. We propose a deep learning powered rail surface multi-flaw identification framework composed of two main components, a novel rail extractor for extracting rails from the background and a cascading rail surface flaw identifier for precisely identifying different flaws. The novelty of the cascading rail surface flaw identifier includes: 1) An unhealthy rail detector developed based on a DenseNet backbone for recognizing the healthy/unhealthy status on rail surfaces and 2) A rail flaw classifier for identifying flaw types on unhealthy rail surfaces. A new feature joint learning process integrating latent features derived from selected hierarchies of the DenseNet backbone as well as two traditional feature extractors, the local binary pattern and the gray level co-occurrence matrix, is developed to facilitate the rail flaw classifier to offer accurate identification results. The effectiveness of the proposed framework for rail surface multi-flaw identification is validated with datasets provided by an industrial partner in China and collected from online sources. Based on collected datasets, the proposed framework is capable to identify the rail with unhealthy conditions and its flaw type. The overall identification performance can achieve a 98.2% accuracy. Three groups of benchmarking methods are employed to verify advantages of the proposed framework. Computational results demonstrate the impressive performance of the proposed framework in the rail surface multi-flaw identification and its applicability on new datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
许安发布了新的文献求助10
3秒前
顺利山柏完成签到 ,获得积分10
3秒前
sky完成签到,获得积分10
3秒前
19秒前
20秒前
sky发布了新的文献求助10
26秒前
星辰大海应助着急的绿兰采纳,获得10
29秒前
小马甲应助一一采纳,获得10
31秒前
科研通AI5应助淡然的妙芙采纳,获得10
38秒前
完美谷秋完成签到 ,获得积分10
39秒前
40秒前
XueXiTong完成签到,获得积分10
46秒前
47秒前
47秒前
yyy发布了新的文献求助10
50秒前
斯文败类应助淡然的妙芙采纳,获得10
52秒前
kk_1315完成签到,获得积分0
53秒前
许安完成签到,获得积分10
56秒前
NexusExplorer应助着急的绿兰采纳,获得10
56秒前
科研通AI5应助魔幻的雪碧采纳,获得10
1分钟前
香蕉觅云应助科研通管家采纳,获得30
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
着急的绿兰完成签到,获得积分10
1分钟前
充电宝应助若离采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI5应助Nana采纳,获得10
1分钟前
若离发布了新的文献求助10
1分钟前
clhoxvpze完成签到 ,获得积分10
1分钟前
1分钟前
大洋的沙滩完成签到,获得积分10
1分钟前
忽而今夏发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186091
求助须知:如何正确求助?哪些是违规求助? 4371430
关于积分的说明 13612208
捐赠科研通 4223806
什么是DOI,文献DOI怎么找? 2316665
邀请新用户注册赠送积分活动 1315295
关于科研通互助平台的介绍 1264338