Future of biomarker evaluation in the realm of artificial intelligence algorithms: application in improved therapeutic stratification of patients with breast and prostate cancer

数字化病理学 前列腺癌 医学 精密医学 内科学 疾病 人工智能 分级(工程) 个性化医疗 医学物理学 病理 癌症 计算机科学 机器学习 乳腺癌 生物信息学 工程类 土木工程 生物
作者
Jenny Fitzgerald,Debra F. Higgins,Claudia Mazo,William Watson,Catherine Mooney,Arman Rahman,Niamh Aspell,A. Connolly,Claudia Aura Gonzalez,William M. Gallagher
出处
期刊:Journal of Clinical Pathology [BMJ]
卷期号:74 (7): 429-434 被引量:30
标识
DOI:10.1136/jclinpath-2020-207351
摘要

Clinical workflows in oncology depend on predictive and prognostic biomarkers. However, the growing number of complex biomarkers contributes to costly and delayed decision-making in routine oncology care and treatment. As cancer is expected to rank as the leading cause of death and the single most important barrier to increasing life expectancy in the 21st century, there is a major emphasis on precision medicine, particularly individualisation of treatment through better prediction of patient outcome. Over the past few years, both surgical and pathology specialties have suffered cutbacks and a low uptake of pathology specialists means a solution is required to enable high-throughput screening and personalised treatment in this area to alleviate bottlenecks. Digital imaging in pathology has undergone an exponential period of growth. Deep-learning (DL) platforms for hematoxylin and eosin (H&E) image analysis, with preliminary artificial intelligence (AI)-based grading capabilities of specimens, can evaluate image characteristics which may not be visually apparent to a pathologist and offer new possibilities for better modelling of disease appearance and possibly improve the prediction of disease stage and patient outcome. Although digital pathology and AI are still emerging areas, they are the critical components for advancing personalised medicine. Integration of transcriptomic analysis, clinical information and AI-based image analysis is yet an uncultivated field by which healthcare professionals can make improved treatment decisions in cancer. This short review describes the potential application of integrative AI in offering better detection, quantification, classification, prognosis and prediction of breast and prostate cancer and also highlights the utilisation of machine learning systems in biomarker evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zy完成签到,获得积分20
刚刚
2秒前
2秒前
zxh完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
杏苑鸽子发布了新的文献求助10
7秒前
我不是很帅完成签到,获得积分10
7秒前
zh完成签到,获得积分10
7秒前
7秒前
SciGPT应助stdbot采纳,获得10
7秒前
future完成签到 ,获得积分10
8秒前
荡南桥发布了新的文献求助30
8秒前
9秒前
李健应助积极的凌波采纳,获得10
9秒前
司空踏歌应助魔幻灯泡采纳,获得10
10秒前
10秒前
11秒前
gzsy完成签到 ,获得积分10
11秒前
12秒前
sjxbjrndkd完成签到 ,获得积分10
12秒前
年轻的溪流完成签到,获得积分10
13秒前
Heidi完成签到,获得积分10
13秒前
123发布了新的文献求助10
13秒前
MauriceH发布了新的文献求助10
13秒前
科研通AI5应助震动的化蛹采纳,获得10
14秒前
李健的小迷弟应助houfei采纳,获得10
14秒前
酷酷皮卡丘完成签到 ,获得积分10
16秒前
16秒前
16秒前
16秒前
甜蜜阑悦完成签到,获得积分10
17秒前
FIGMA发布了新的文献求助10
17秒前
orixero应助日四又采纳,获得10
19秒前
19秒前
20秒前
20秒前
雪白发卡完成签到,获得积分10
21秒前
许诺发布了新的文献求助10
22秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816874
求助须知:如何正确求助?哪些是违规求助? 3360257
关于积分的说明 10407382
捐赠科研通 3078228
什么是DOI,文献DOI怎么找? 1690660
邀请新用户注册赠送积分活动 813990
科研通“疑难数据库(出版商)”最低求助积分说明 767924