Future of biomarker evaluation in the realm of artificial intelligence algorithms: application in improved therapeutic stratification of patients with breast and prostate cancer

数字化病理学 前列腺癌 医学 精密医学 内科学 疾病 人工智能 分级(工程) 个性化医疗 医学物理学 病理 癌症 计算机科学 机器学习 乳腺癌 生物信息学 工程类 土木工程 生物
作者
Jenny Fitzgerald,Debra F. Higgins,Claudia Mazo,William Watson,Catherine Mooney,Arman Rahman,Niamh Aspell,A. Connolly,Claudia Aura Gonzalez,William M. Gallagher
出处
期刊:Journal of Clinical Pathology [BMJ]
卷期号:74 (7): 429-434 被引量:30
标识
DOI:10.1136/jclinpath-2020-207351
摘要

Clinical workflows in oncology depend on predictive and prognostic biomarkers. However, the growing number of complex biomarkers contributes to costly and delayed decision-making in routine oncology care and treatment. As cancer is expected to rank as the leading cause of death and the single most important barrier to increasing life expectancy in the 21st century, there is a major emphasis on precision medicine, particularly individualisation of treatment through better prediction of patient outcome. Over the past few years, both surgical and pathology specialties have suffered cutbacks and a low uptake of pathology specialists means a solution is required to enable high-throughput screening and personalised treatment in this area to alleviate bottlenecks. Digital imaging in pathology has undergone an exponential period of growth. Deep-learning (DL) platforms for hematoxylin and eosin (H&E) image analysis, with preliminary artificial intelligence (AI)-based grading capabilities of specimens, can evaluate image characteristics which may not be visually apparent to a pathologist and offer new possibilities for better modelling of disease appearance and possibly improve the prediction of disease stage and patient outcome. Although digital pathology and AI are still emerging areas, they are the critical components for advancing personalised medicine. Integration of transcriptomic analysis, clinical information and AI-based image analysis is yet an uncultivated field by which healthcare professionals can make improved treatment decisions in cancer. This short review describes the potential application of integrative AI in offering better detection, quantification, classification, prognosis and prediction of breast and prostate cancer and also highlights the utilisation of machine learning systems in biomarker evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
青年才俊发布了新的文献求助50
刚刚
刚刚
刚刚
rlomened发布了新的文献求助10
刚刚
mm完成签到,获得积分10
2秒前
fusheng发布了新的文献求助10
2秒前
SQ发布了新的文献求助10
3秒前
4秒前
小贩发布了新的文献求助10
5秒前
wtt发布了新的文献求助10
5秒前
5秒前
rlomened完成签到,获得积分20
8秒前
nana发布了新的文献求助10
8秒前
爆米花应助WATeam采纳,获得10
11秒前
核桃发布了新的文献求助10
11秒前
动人的又菡完成签到,获得积分10
11秒前
Amy完成签到,获得积分10
14秒前
15秒前
15秒前
迅速的丑完成签到,获得积分10
16秒前
小刘发布了新的文献求助10
16秒前
CipherSage应助燕窝窝采纳,获得10
16秒前
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
小杭76应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
木由发布了新的文献求助30
18秒前
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
无花果应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289591
求助须知:如何正确求助?哪些是违规求助? 4441121
关于积分的说明 13826643
捐赠科研通 4323520
什么是DOI,文献DOI怎么找? 2373234
邀请新用户注册赠送积分活动 1368631
关于科研通互助平台的介绍 1332534