Estimating construction waste truck payload volume using monocular vision

卡车 有效载荷(计算) 体积热力学 分类 拆迁垃圾 拆毁 城市固体废物 工程类 废物管理 环境科学 计算机科学 土木工程 汽车工程 算法 量子力学 物理 网络数据包 计算机网络
作者
Junjie Chen,Weisheng Lu,Liang Yuan,Yijie Wu,Fan Xue
出处
期刊:Resources Conservation and Recycling [Elsevier BV]
卷期号:177: 106013-106013 被引量:35
标识
DOI:10.1016/j.resconrec.2021.106013
摘要

Quantifying truck-loaded materials is a problem in many industrial operations. In construction and demolition waste (CDW) management, inspectors at disposal facilities are often required to measure the amount of different waste components loaded by incoming trucks to determine admissibility. Due to the bulky and mixed nature of construction materials, accurate quantification of specific waste categories without sacrificing operability in the field is a challenge. This study proposes a CDW volume estimation algorithm based on monocular vision which can automatically quantify from a single image the amount of specific material components, e.g., rock, gravel, and wood, in waste mixtures. The algorithm achieves a relative error of 0.065 in calculating truck bucket dimensions, and a relative error of 0.169 in estimating material-level construction waste volume. It takes 3.3 s in average to process one image. In applying the algorithm to analyze 2,914 waste truckloads received by an off-site sorting facility in Hong Kong, we observe that the facility entrance received around 800.0 m3 CDW per day of which about 10.8 m3 were rejected. Since non-inert wood/cardboard accounts for the highest proportion among all material types, this may imply that many waste dumps accepted by the facility may have been in violation of the admissibility criteria. The study contributes to the knowledge body by providing a novel, non-destructive approach to quantifying CDW via monocular vision. It can be extended to address the general problem of truck payload quantification in scenarios such as road construction, warehouse inventory management, and logistics and supply chain management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心的大炮完成签到,获得积分10
2秒前
5秒前
bkagyin应助yecheng采纳,获得10
5秒前
Hayley完成签到,获得积分10
6秒前
桐桐应助龙卡烧烤店采纳,获得10
8秒前
9秒前
Ashley发布了新的文献求助10
9秒前
10秒前
柠檬发布了新的文献求助10
10秒前
冰魂应助姜宇航采纳,获得20
11秒前
Ancestor完成签到,获得积分20
13秒前
Hayley发布了新的文献求助10
15秒前
浅色西完成签到,获得积分10
16秒前
小巧的惋清完成签到 ,获得积分10
18秒前
冰魂应助拾姑娘的小稻穗采纳,获得20
18秒前
领导范儿应助Hayley采纳,获得30
22秒前
22秒前
26秒前
oldblack完成签到,获得积分10
26秒前
一切顺利完成签到,获得积分10
27秒前
XinyuLu完成签到,获得积分10
28秒前
普外科老白完成签到,获得积分10
28秒前
beiest完成签到,获得积分10
29秒前
30秒前
SciGPT应助XU采纳,获得10
30秒前
我是老大应助锦云采纳,获得10
30秒前
he大海贼发布了新的文献求助10
31秒前
32秒前
小木虫应助nana2hao采纳,获得20
33秒前
小菜鸡完成签到,获得积分10
33秒前
邓豪完成签到 ,获得积分10
35秒前
36秒前
苏州小北发布了新的文献求助20
36秒前
科研通AI5应助霸气的金鱼采纳,获得10
37秒前
hhh334发布了新的文献求助10
37秒前
38秒前
41秒前
huche发布了新的文献求助30
42秒前
锦云发布了新的文献求助10
44秒前
大个应助冷傲以珊采纳,获得10
44秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836309
求助须知:如何正确求助?哪些是违规求助? 3378623
关于积分的说明 10505359
捐赠科研通 3098262
什么是DOI,文献DOI怎么找? 1706407
邀请新用户注册赠送积分活动 821000
科研通“疑难数据库(出版商)”最低求助积分说明 772382