厄米矩阵
数学
转置
多线性代数
推论
反向
摩尔-彭罗斯伪逆
域代数上的
多线性映射
基质(化学分析)
纯数学
结合
代表(政治)
广义逆
正规矩阵
组合数学
数学分析
乔丹代数
代数表示
特征向量
几何学
物理
材料科学
法学
复合材料
政治
量子力学
政治学
作者
Oskar Maria Baksalary,Götz Trenkler
标识
DOI:10.1080/03081080600872616
摘要
Various characterizations of EP, normal, and Hermitian matrices are obtained by exploiting an elegant representation of matrices derived by Hartwig and Spindelböck [7 Hartwig, RE and Spindelböck, K. 1984. Matrices for which A* and A† commute. Linear and Multilinear Algebra, 14: 241–256. [Taylor & Francis Online] , [Google Scholar], Corollary 6]. One aim of the present article is to demonstrate its usefulness when investigating different matrix identities. The second aim is to extend and generalize lists of characterizations of Equal Projectors (EP), normal, and Hermitian matrices known in the literature, by providing numerous sets of equivalent conditions referring to the notions of conjugate transpose, Moore–Penrose inverse, and group inverse.
科研通智能强力驱动
Strongly Powered by AbleSci AI