Evaluation of Automatic Atlas-Based Lymph Node Segmentation for Head-and-Neck Cancer

轮廓 分割 医学 人工智能 头颈部 地图集(解剖学) 核医学 模式识别(心理学) 计算机视觉 计算机科学 外科 解剖 计算机图形学(图像)
作者
Liza J. Stapleford,Joshua D. Lawson,Charles Perkins,Scott Edelman,Lawrence W. Davis,Mark W. McDonald,Anthony F. Waller,Eduard Schreibmann,Tim Fox
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:77 (3): 959-966 被引量:131
标识
DOI:10.1016/j.ijrobp.2009.09.023
摘要

Purpose To evaluate if automatic atlas-based lymph node segmentation (LNS) improves efficiency and decreases inter-observer variability while maintaining accuracy. Methods and Materials Five physicians with head-and-neck IMRT experience used computed tomography (CT) data from 5 patients to create bilateral neck clinical target volumes covering specified nodal levels. A second contour set was automatically generated using a commercially available atlas. Physicians modified the automatic contours to make them acceptable for treatment planning. To assess contour variability, the Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm was used to take collections of contours and calculate a probabilistic estimate of the "true" segmentation. Differences between the manual, automatic, and automatic-modified (AM) contours were analyzed using multiple metrics. Results Compared with the "true" segmentation created from manual contours, the automatic contours had a high degree of accuracy, with sensitivity, Dice similarity coefficient, and mean/max surface disagreement values comparable to the average manual contour (86%, 76%, 3.3/17.4 mm automatic vs. 73%, 79%, 2.8/17 mm manual). The AM group was more consistent than the manual group for multiple metrics, most notably reducing the range of contour volume (106–430 mL manual vs. 176–347 mL AM) and percent false positivity (1–37% manual vs. 1–7% AM). Average contouring time savings with the automatic segmentation was 11.5 min per patient, a 35% reduction. Conclusions Using the STAPLE algorithm to generate "true" contours from multiple physician contours, we demonstrated that, in comparison with manual segmentation, atlas-based automatic LNS for head-and-neck cancer is accurate, efficient, and reduces interobserver variability. To evaluate if automatic atlas-based lymph node segmentation (LNS) improves efficiency and decreases inter-observer variability while maintaining accuracy. Five physicians with head-and-neck IMRT experience used computed tomography (CT) data from 5 patients to create bilateral neck clinical target volumes covering specified nodal levels. A second contour set was automatically generated using a commercially available atlas. Physicians modified the automatic contours to make them acceptable for treatment planning. To assess contour variability, the Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm was used to take collections of contours and calculate a probabilistic estimate of the "true" segmentation. Differences between the manual, automatic, and automatic-modified (AM) contours were analyzed using multiple metrics. Compared with the "true" segmentation created from manual contours, the automatic contours had a high degree of accuracy, with sensitivity, Dice similarity coefficient, and mean/max surface disagreement values comparable to the average manual contour (86%, 76%, 3.3/17.4 mm automatic vs. 73%, 79%, 2.8/17 mm manual). The AM group was more consistent than the manual group for multiple metrics, most notably reducing the range of contour volume (106–430 mL manual vs. 176–347 mL AM) and percent false positivity (1–37% manual vs. 1–7% AM). Average contouring time savings with the automatic segmentation was 11.5 min per patient, a 35% reduction. Using the STAPLE algorithm to generate "true" contours from multiple physician contours, we demonstrated that, in comparison with manual segmentation, atlas-based automatic LNS for head-and-neck cancer is accurate, efficient, and reduces interobserver variability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋子发布了新的文献求助10
刚刚
Ryan完成签到,获得积分10
刚刚
cc发布了新的文献求助20
1秒前
1秒前
桐桐应助可乐加糖采纳,获得10
1秒前
小二郎应助跳跃蹇采纳,获得10
2秒前
2秒前
夕赣发布了新的文献求助10
2秒前
肖志勇发布了新的文献求助20
2秒前
2秒前
背后友蕊发布了新的文献求助10
4秒前
内向翰完成签到,获得积分10
4秒前
蟹蟹发布了新的文献求助10
5秒前
大模型应助jackbauer采纳,获得10
5秒前
li发布了新的文献求助10
5秒前
星辰大海应助我的法尼玛采纳,获得10
5秒前
谨慎的向南完成签到,获得积分10
6秒前
笨笨乌关注了科研通微信公众号
7秒前
7秒前
cjlu_cx发布了新的文献求助10
7秒前
科研通AI5应助颖二二采纳,获得10
7秒前
科目三应助大大彬采纳,获得10
8秒前
8秒前
lee1984612完成签到,获得积分10
8秒前
9秒前
10秒前
危机的安容完成签到,获得积分10
10秒前
10秒前
10秒前
星宿完成签到,获得积分10
12秒前
Cauchy完成签到,获得积分10
12秒前
香蕉觅云应助蟹蟹采纳,获得10
12秒前
13秒前
13秒前
喵喵7完成签到 ,获得积分10
13秒前
13秒前
13秒前
14秒前
可乐加糖完成签到,获得积分20
14秒前
bertha325发布了新的文献求助10
15秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804782
求助须知:如何正确求助?哪些是违规求助? 3349826
关于积分的说明 10346008
捐赠科研通 3065719
什么是DOI,文献DOI怎么找? 1683256
邀请新用户注册赠送积分活动 808798
科研通“疑难数据库(出版商)”最低求助积分说明 764846