已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning in Otolaryngology

耳鼻咽喉科 深度学习 人工智能 医学物理学 分割 医学 计算机科学 工作流程 机器学习 特征(语言学) 叙述性评论 人工神经网络 鼻咽癌 预言 深层神经网络 精密医学 医学影像学 图像分割 隐藏字幕 缩略语 癌症 地标
作者
Sergio L. Novi,Nithya Navarathna,Marcel D’Cruz,Justin R. Brooks,Bradley A. Maron,Amal Isaiah
出处
期刊:JAMA otolaryngology-- head & neck surgery [American Medical Association]
标识
DOI:10.1001/jamaoto.2025.3911
摘要

Importance Deep learning (DL), a subset of artificial intelligence, uses multilayered neural networks to uncover complex patterns in large datasets without manual feature engineering. Unlike traditional machine learning, DL autonomously learns hierarchical representations from raw data, offering distinct advantages for analyzing images (eg, stroboscopy) and physiologic signals (eg, cochlear implant optimization). Despite these advances, DL remains conceptually difficult for many clinicians to integrate into routine clinical practice. This narrative review sought to synthesize recent DL applications and propose a framework for their integration in otolaryngology. Observations A total of 1422 articles (2020-2025) were screened, and 327 original research studies on DL in otolaryngology were included in the analysis. The included articles were categorized into 4 domains: detection and diagnosis (179 [55%]), prediction and prognostics (16; [5%]), image segmentation (93 [28%]), and emerging applications (39 [12%]). Proof-of-concept studies have demonstrated that DL systems can achieve acceptable diagnostic performance comparable to experts, with models accurately identifying nasopharyngeal carcinoma (92%), laryngeal malignant neoplasms (86%), and otologic pathology (>95%). Prognostic applications included survival stratification in oropharyngeal cancer and recurrence prediction in chronic rhinosinusitis. Segmentation models reliably delineated anatomical regions. Emerging uses encompassed hearing aid optimization, surgical instrument tracking, and intraoperative landmark identification. Further progress requires multi-institutional datasets, standardized acquisition protocols, and transparent, interpretable models to improve trust and clinical adoption. Conclusions and Relevance This narrative review found that DL applications in otolaryngology show potential for improving diagnostic performance, predicting outcomes, and providing intraoperative guidance. Widespread and equitable adoption needs to be supported by harmonized, high-quality, and representative datasets, as well as the mitigation of algorithmic bias and robust model interpretability. Federated learning and explainability are emerging frameworks that support the preservation of privacy and increased clinician trust. Standardized reporting, prospective validation, human-in-the-loop models, and interdisciplinary partnerships can help balance the promise of algorithmic approaches and their clinical utility, ensuring that DL tools contribute meaningfully to patient care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
大个应助chenchen采纳,获得10
3秒前
FF发布了新的文献求助20
3秒前
浮游应助科研鬼才采纳,获得10
4秒前
5秒前
5秒前
观鹤轩发布了新的文献求助10
6秒前
xiaolei完成签到 ,获得积分10
11秒前
单薄的风华完成签到,获得积分20
12秒前
12秒前
怕黑不惜发布了新的文献求助50
13秒前
顺心醉蝶完成签到 ,获得积分10
14秒前
15秒前
he完成签到,获得积分10
15秒前
16秒前
慕青应助闪光魔法暴龙采纳,获得10
16秒前
我是老大应助yorktang采纳,获得10
16秒前
Orange应助Hollow采纳,获得10
16秒前
17秒前
peanut发布了新的文献求助10
17秒前
17秒前
18秒前
豆包发布了新的文献求助10
19秒前
哆啦十七应助VEKING采纳,获得10
20秒前
科研鬼才完成签到,获得积分10
21秒前
21秒前
张淼发布了新的文献求助10
22秒前
23秒前
fanyouxin发布了新的文献求助10
24秒前
烟花应助he采纳,获得10
25秒前
Hollow发布了新的文献求助10
27秒前
Sylvia驳回了顾矜应助
28秒前
wanci应助今夜有雨采纳,获得10
29秒前
29秒前
从容的秋尽关注了科研通微信公众号
30秒前
30秒前
酷波er应助科研通管家采纳,获得10
30秒前
Murphy应助科研通管家采纳,获得10
30秒前
Murphy应助科研通管家采纳,获得10
30秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344847
求助须知:如何正确求助?哪些是违规求助? 4479999
关于积分的说明 13945121
捐赠科研通 4377250
什么是DOI,文献DOI怎么找? 2405172
邀请新用户注册赠送积分活动 1397728
关于科研通互助平台的介绍 1370019