激发态
光催化
催化作用
析氧
材料科学
光化学
过氧化氢
纳米技术
工作(物理)
光电子学
可扩展性
桥接(联网)
氢
化学物理
氧化还原
分解水
化学工程
化学
极化(电化学)
氧气
反应中间体
表面改性
纳米结构
表面状态
连锁反应
调制(音乐)
布朗斯特德-洛瑞酸碱理论
纳米尺度
干扰(通信)
反应机理
化学反应
作者
Shuhan Jia,Xinyu Lin,Pengwei Huo,Yanfen Fang,Yi-Fan Zhang,Zhonghuan Liu,Guangbo Che,Yubao Zhao,Weidong Shi,Yan Yan
标识
DOI:10.1002/ange.202518179
摘要
Abstract Achieving selective two‐electron water oxidation (2e − WOR) for sustainable hydrogen peroxide (H 2 O 2) synthesis, while suppressing the competing four‐electron oxygen evolution (4e − OER), represents a formidable challenge in artificial photosynthesis. The difficulty lies in the inherent vulnerability of the *OOH intermediate to over‐oxidation or disproportionation, which triggers uncontrollable chain side reactions and naturally biases the reaction toward the less selective 4e − OER pathway. Here, we present a surface‐engineering strategy utilizing a ZnCdS 2 photocatalyst functionalized with polarized N⁺ surfactants, enabling molecular‐level control over interfacial water oxidation pathways by establishing a charge‐transfer (C‐T) excited state. The polarized N⁺ centers effectively reconfigure the surface electronic states through molecular‐scale polarization, achieving i) precise modulation of hole potentials and ii) stabilization of the *OOH intermediate, thereby promoting a direct 2e − WOR pathway. Without the use of any sacrificial reagents, this design achieves an exceptional H 2 O 2 production rate of 2.37 mmol·g − 1 ·h − 1 (20.26 times of pristine ZnCdS 2 ) statically and the scalable outlet concentration of 1.61 mM through a serial micro‐batch flow reactor. By bridging atomic‐level charge control with macroscopic catalytic performance, our work offers a proof‐of‐concept advance in C‐T excited state driven photocatalysis, highlighting how surface electronic states can drive selective multi‐electron reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI