化学
催交
光谱学
未成对电子
反键分子轨道
动能
密度泛函理论
催化作用
化学物理
光化学
掉期(金融)
阴极
吸收光谱法
氧气
自旋(空气动力学)
活化能
纳米技术
功率密度
电子
自旋态
分析化学(期刊)
二维核磁共振波谱
结合能
交换电流密度
吸收(声学)
配对
燃料电池
分子物理学
作者
Hao Wan,Xiuxuan Hou,Si Chen,Zhechen Fan,Lin Lin,Yixuan Yin,Weiyi Zhao,L. G. Hou,Huan Yan,Ying Wang,Junjie Ge
摘要
Fe-N-C catalysts have long suffered from kinetically sluggish oxygen reduction reaction (ORR) because of the overly strong binding to oxygen-related reaction species. Modulating the spin state of active centers emerges as a promising strategy to break the kinetic bottleneck. Herein, we show that high-spin (HS) Fe2+ (t2g4eg2) centers, with the emergence of unpaired 3d electrons in the dz2 orbital, offer a substantially reduced reaction energy barrier through synergistic regulation of H2O-O2 adsorption. Facial low-spin (LS) Fe3+(t2g5eg0) to HS Fe2+ transition was achieved via densifying the Fe site density, stemming from the Ruderman-Kittel-Kasuya-Yosida (RKKY) mechanism. Synchrotron-based Fe Kβ X-ray emission spectroscopy (XES) and L-edge soft X-ray absorption spectroscopy (sXAS) directly reveal t2g-eg redistribution. These HS sites promote antibonding orbital occupancy compared to LS states, corroborating a correlation between spin density, reduced activation energy, and turnover frequency. Consequently, the single cell test achieves a peak power density of approximately 1.31 W cm-2 and delivers a current density of 65.1 mA cm-2 at 0.9 ViR-free, surpassing the DOE 2025 target and most of the previously reported Fe-N-C catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI