Machine Learning for Predicting the Surface Plasmon Resonance of Perfect and Concave Gold Nanocubes

人工神经网络 表面等离子共振 山脊 正规化(语言学) 算法 人工智能 离散偶极子近似 计算机科学 试验装置 偶极子 数学 机器学习 物理 材料科学 地质学 纳米技术 量子力学 古生物学 纳米颗粒
作者
Jesús A. Arzola-Flores,A. L. González
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:124 (46): 25447-25454 被引量:23
标识
DOI:10.1021/acs.jpcc.0c05995
摘要

Using the combination of the discrete dipole approximation (DDA) and machine learning methods, we have developed a computational tool to predict the wavelength at which the dipole surface plasmon resonance (SPR) of gold concave nanocubes (GCNCs) takes place. First, we have used the DDA to generate SPR data considering two main features, the length and the concavity of the nanocube. Then, for training, test, and validation, two mechanisms were considered. Mechanism A consisted in splitting 100% of the generated data into two separate sets, one covering 75% and other with the remaining 25% of the whole data. The two separate subsets were used as training and test sets, respectively. Mechanism B basically consisted of SPR data set splitting into k subsets, following a k-fold cross validation procedure. For the machine learning algorithms, we used the K-nearest neighbors model, the ridge regression, and the artificial neural network regressor. The three models utilized here lead to different accuracies that depend on the selection of the mechanism used, either A or B. It was found that the accuracy in the prediction is sensitive to the L2 regularization when the ridge regression is used. On the other hand, when the K-nearest neighbors model is employed, the accuracy depends on the number of nearest neighbors utilized during the calculations. With ridge regression or K-nearest neighbors, the accuracy obtained is between 80 and 94%. The best method for the SPR prediction of the GCNCs is the artificial neural network with eight neurons and L2 = 10 because the accuracy for the predicted values is around 93%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc完成签到,获得积分10
1秒前
清风徐来应助动听的秋白采纳,获得10
1秒前
2秒前
2秒前
小番茄完成签到,获得积分10
2秒前
boxi完成签到 ,获得积分10
3秒前
笨鸟先飞完成签到 ,获得积分10
3秒前
3秒前
梅狸猫发布了新的文献求助10
3秒前
Andrew02应助Robin采纳,获得10
3秒前
tt完成签到,获得积分10
4秒前
逍遥完成签到,获得积分10
4秒前
小明完成签到,获得积分10
5秒前
小野狼完成签到,获得积分10
6秒前
夜猫完成签到,获得积分10
6秒前
Orange应助严西采纳,获得10
6秒前
6秒前
有点小卑鄙完成签到,获得积分10
6秒前
wyw123完成签到,获得积分10
6秒前
haibing发布了新的文献求助10
6秒前
cc完成签到,获得积分20
7秒前
落寞冬云完成签到,获得积分10
8秒前
小团子完成签到 ,获得积分10
8秒前
梧桐雨210完成签到,获得积分10
8秒前
唠叨的雪糕完成签到,获得积分10
9秒前
小雨完成签到,获得积分10
9秒前
矜天完成签到 ,获得积分10
10秒前
10秒前
10秒前
10秒前
jjeuchi发布了新的文献求助20
11秒前
Lenacici完成签到,获得积分10
11秒前
burno1112完成签到,获得积分10
12秒前
冰激凌完成签到,获得积分10
13秒前
犹豫的初丹完成签到,获得积分10
13秒前
啦啦啦完成签到,获得积分10
13秒前
13秒前
Rling完成签到,获得积分10
13秒前
纷纭完成签到,获得积分10
14秒前
李雨泽完成签到,获得积分10
15秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4061661
求助须知:如何正确求助?哪些是违规求助? 3600275
关于积分的说明 11433299
捐赠科研通 3323815
什么是DOI,文献DOI怎么找? 1827483
邀请新用户注册赠送积分活动 897954
科研通“疑难数据库(出版商)”最低求助积分说明 818774