Wearable Armband Device for Daily Life Electrocardiogram Monitoring

计算机科学 工件(错误) 可穿戴计算机 可用的 支持向量机 动态心电图 人工智能 模式识别(心理学) 模拟 心电图 医学 心脏病学 嵌入式系统 万维网
作者
Jesús Lázaro,Nataša Reljin,Md-Billal Hossain,Yeonsik Noh,Pablo Laguna,Ki H. Chon
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:67 (12): 3464-3473 被引量:57
标识
DOI:10.1109/tbme.2020.2987759
摘要

A wearable armband electrocardiogram (ECG) monitor has been used for daily life monitoring. The armband records three ECG channels, one electromyogram (EMG) channel, and tri-axial accelerometer signals. Contrary to conventional Holter monitors, the armband-based ECG device is convenient for long-term daily life monitoring because it uses no obstructive leads and has dry electrodes (no hydrogels), which do not cause skin irritation even after a few days. Principal component analysis (PCA) and normalized least mean squares (NLMS) adaptive filtering were used to reduce the EMG noise from the ECG channels. An artifact detector and an optimal channel selector were developed based on a support vector machine (SVM) classifier with a radial basis function (RBF) kernel using features that are related to the ECG signal quality. Mean HR was estimated from the 24-hour armband recordings from 16 volunteers in segments of 10 seconds each. In addition, four classical HR variability (HRV) parameters (SDNN, RMSSD, and powers at low and high frequency bands) were computed. For comparison purposes, the same parameters were estimated also for data from a commercial Holter monitor. The armband provided usable data (difference less than 10% from Holter-estimated mean HR) during 75.25%/11.02% (inter-subject median/interquartile range) of segments when the user was not in bed, and during 98.49%/0.79% of the bed segments. The automatic artifact detector found 53.85%/17.09% of the data to be usable during the non-bed time, and 95.00%/2.35% to be usable during the time in bed. The HRV analysis obtained a relative error with respect to the Holter data not higher than 1.37% (inter-subject median/interquartile range). Although further studies have to be conducted for specific applications, results suggest that the armband device has a good potential for daily life HR monitoring, especially for applications such as arrhythmia or seizure detection, stress assessment, or sleep studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZJING9完成签到,获得积分10
3秒前
7秒前
sss发布了新的文献求助200
13秒前
14秒前
哈哈哈发布了新的文献求助10
17秒前
领导范儿应助简单的如曼采纳,获得10
17秒前
18秒前
慕青应助fkdbdy采纳,获得10
18秒前
19秒前
大地发布了新的文献求助10
19秒前
22秒前
毒蝎King完成签到,获得积分10
22秒前
NexusExplorer应助土拨鼠采纳,获得10
22秒前
23秒前
科研通AI5应助凝心采纳,获得10
24秒前
思睿拜完成签到 ,获得积分10
26秒前
爱听歌的梦易完成签到 ,获得积分10
26秒前
33秒前
大地完成签到,获得积分10
37秒前
40秒前
哈哈哈完成签到,获得积分10
41秒前
小王同学完成签到 ,获得积分10
41秒前
43秒前
fishhh发布了新的文献求助10
47秒前
微笑的天抒完成签到,获得积分10
50秒前
50秒前
51秒前
iwhsgfes发布了新的文献求助10
54秒前
Aurora发布了新的文献求助10
55秒前
虚拟的钻石完成签到,获得积分10
56秒前
57秒前
chengche发布了新的文献求助10
58秒前
YIFEI发布了新的文献求助10
1分钟前
小龅牙吖发布了新的文献求助10
1分钟前
ZIS完成签到,获得积分10
1分钟前
乐乐应助elous采纳,获得10
1分钟前
longlian57完成签到,获得积分10
1分钟前
1分钟前
嗯哼完成签到 ,获得积分10
1分钟前
科研通AI5应助hulala采纳,获得30
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778382
求助须知:如何正确求助?哪些是违规求助? 3324102
关于积分的说明 10217105
捐赠科研通 3039323
什么是DOI,文献DOI怎么找? 1667963
邀请新用户注册赠送积分活动 798447
科研通“疑难数据库(出版商)”最低求助积分说明 758385