Machine learning defined diagnostic criteria for differentiating pituitary metastasis from autoimmune hypophysitis in patients undergoing immune checkpoint blockade therapy

医学 垂体炎 接收机工作特性 免疫检查点 肿瘤科 癌症 内科学 免疫疗法 放射科 算法 机器学习 垂体 计算机科学 激素
作者
Ahmed Mekki,Laurent Dercle,Paul Lichtenstein,Ghaida Nasser,Aurélien Marabelle,Stéphane Champiat,Émilie Chouzenoux,Corinne Balleyguier,Samy Ammari
出处
期刊:European Journal of Cancer [Elsevier BV]
卷期号:119: 44-56 被引量:34
标识
DOI:10.1016/j.ejca.2019.06.020
摘要

Purpose New-onset pituitary gland lesions are observed in up to 18% of cancer patients undergoing treatment with immune checkpoint blockers (ICB). We aimed to develop and validate an imaging-based decision-making algorithm for use by the clinician that helps differentiate pituitary metastasis (PM) from ICB-induced autoimmune hypophysitis (HP). Materials and methods A systematic search was performed in the MEDLINE and EMBASE databases up to October 2018 to identify studies concerning PM and HP in patients treated with cytotoxic T–lymphocyte–associated protein 4 and programmed cell death (ligand) 1. The reference standard for diagnosis was confirmation by histology or response on follow-up imaging. Patients from included studies were randomly assigned to the training set or the validation set. Using machine learning (random forest tree algorithm) with the most-described six imaging and three clinical features, a multivariable prediction model (the signature) was developed and validated for diagnosing PM. Signature performance was evaluated using area under a receiver operating characteristic curves (AUCs). Results Out of 3174 screened articles, 65 were included totalising 122 patients (HP: 60 pts, PM: 62 pts). Complete radiological data were available in 82 pts (Training: 62 pts, Validation: 20 pts). The signature reached an AUC = 0.91 (0.82, 1.00), P < 10−8 in the training set and AUC = 0.94 (0.80, 1.00), P = 0.001 in the validation set. The signature predicted PM in lesions either ≥ 2 cm in size or < 2 cm if associated with heterogeneous contrast enhancement and cavernous extension. Conclusion An image-based signature was developed with machine learning and validated for differentiating PM from HP. This tool could be used by clinicians for enhanced decision-making in cancer patients undergoing ICB treatment with new-onset, concerning lesions of the pituitary gland.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
健壮纸鹤完成签到,获得积分10
1秒前
1秒前
1秒前
NexusExplorer应助xixi采纳,获得10
3秒前
3秒前
灯灯完成签到,获得积分10
4秒前
Hey发布了新的文献求助10
4秒前
大个应助科研通管家采纳,获得10
5秒前
123456完成签到,获得积分10
5秒前
冰魂应助科研通管家采纳,获得10
5秒前
mmyhn应助科研通管家采纳,获得20
5秒前
科研通AI5应助Aspirin采纳,获得10
5秒前
6秒前
落后师应助科研通管家采纳,获得10
6秒前
星星亮应助科研通管家采纳,获得10
6秒前
6秒前
易贺完成签到,获得积分10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
小朱应助科研通管家采纳,获得10
6秒前
852应助彩色青亦采纳,获得20
6秒前
木心儿吖应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
落后师应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
失眠醉易应助科研通管家采纳,获得20
7秒前
Akim应助淡淡夕阳采纳,获得10
7秒前
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
7秒前
liwenhao123发布了新的文献求助20
8秒前
zho发布了新的文献求助10
9秒前
xx完成签到,获得积分10
9秒前
震动的凌丝完成签到,获得积分10
9秒前
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817682
求助须知:如何正确求助?哪些是违规求助? 3360954
关于积分的说明 10410402
捐赠科研通 3079042
什么是DOI,文献DOI怎么找? 1690956
邀请新用户注册赠送积分活动 814272
科研通“疑难数据库(出版商)”最低求助积分说明 768068