An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: cases with different types of spatial data

空间分析 空间异质性 地理信息系统 地理 统计 地图学 遥感 数学 生态学 生物
作者
Yongze Song,Jinfeng Wang,Yong Ge,Chengdong Xu
出处
期刊:Giscience & Remote Sensing [Taylor & Francis]
卷期号:57 (5): 593-610 被引量:799
标识
DOI:10.1080/15481603.2020.1760434
摘要

Spatial heterogeneity represents a general characteristic of the inequitable distributions of spatial issues. The spatial stratified heterogeneity analysis investigates the heterogeneity among various strata of explanatory variables by comparing the spatial variance within strata and that between strata. The geographical detector model is a widely used technique for spatial stratified heterogeneity analysis. In the model, the spatial data discretization and spatial scale effects are fundamental issues, but they are generally determined by experience and lack accurate quantitative assessment in previous studies. To address this issue, an optimal parameters-based geographical detector (OPGD) model is developed for more accurate spatial analysis. The optimal parameters are explored as the best combination of spatial data discretization method, break number of spatial strata, and spatial scale parameter. In the study, the OPGD model is applied in three example cases with different types of spatial data, including spatial raster data, spatial point or areal statistical data, and spatial line segment data, and an R "GD" package is developed for computation. Results show that the parameter optimization process can further extract geographical characteristics and information contained in spatial explanatory variables in the geographical detector model. The improved model can be flexibly applied in both global and regional spatial analysis for various types of spatial data. Thus, the OPGD model can improve the overall capacity of spatial stratified heterogeneity analysis. The OPGD model and its diverse solutions can contribute to more accurate, flexible, and efficient spatial heterogeneity analysis, such as spatial patterns investigation and spatial factor explorations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落后世界发布了新的文献求助10
1秒前
门门发布了新的文献求助10
2秒前
2秒前
无限南风发布了新的文献求助10
2秒前
2秒前
2秒前
翻似烂柯人完成签到,获得积分10
3秒前
潔思米完成签到,获得积分10
3秒前
4秒前
贪玩的秋柔完成签到,获得积分10
4秒前
浮游应助感动的仙人掌采纳,获得10
4秒前
超级的笑天完成签到,获得积分10
6秒前
桐桐应助spy采纳,获得10
6秒前
张Z3210_完成签到,获得积分10
7秒前
7秒前
酸溜溜发布了新的文献求助10
8秒前
落后世界完成签到,获得积分10
8秒前
9秒前
酷波er应助愿景采纳,获得10
9秒前
9秒前
Ava应助复杂的天荷采纳,获得10
9秒前
鲤鱼雁芙发布了新的文献求助10
9秒前
科研通AI2S应助刘安成采纳,获得10
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
老王完成签到,获得积分10
12秒前
aktuell发布了新的文献求助10
13秒前
wxwxwx77发布了新的文献求助10
15秒前
又欠发布了新的文献求助10
15秒前
15秒前
15秒前
gro_ele发布了新的文献求助10
16秒前
禾凹郝发布了新的文献求助10
18秒前
王小妮完成签到,获得积分10
19秒前
gro_ele完成签到,获得积分10
21秒前
21秒前
wen完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5087531
求助须知:如何正确求助?哪些是违规求助? 4302881
关于积分的说明 13409086
捐赠科研通 4128274
什么是DOI,文献DOI怎么找? 2260820
邀请新用户注册赠送积分活动 1264937
关于科研通互助平台的介绍 1199278