材料科学
溅射
干扰(通信)
选择性
薄膜
化学工程
催化作用
光电子学
分析化学(期刊)
纳米技术
化学
计算机科学
色谱法
频道(广播)
电信
工程类
生物化学
作者
Nguyễn Văn Toàn,Chu Manh Hung,Nguyễn Đức Hòa,Nguyễn Văn Duy,Dang Thi Thanh Le,Nguyen Thi Thu Hoa,Nguyễn Ngọc Việt,Phan Hong Phuoc,Nguyễn Văn Hiếu
标识
DOI:10.1016/j.jhazmat.2021.125181
摘要
The selective detection and classification of NH3 and H2S gases with H2S gas interference based on conventional SnO2 thin film sensors is still the main problem. In this work, three layers of SnO2/Pt/WO3 nanofilms with different WO3 thicknesses (50, 80, 140, and 260 nm) were fabricated using the sputtering technique. The WO3 top layer were used as a gas filter to further improve the selectivity of sensors. The effect of WO3 thickness on the (NH3, H2, and H2S) gas-sensing properties of the sensors was investigated. At the optimal WO3 thickness of 140 nm, the gas responses of SnO2/Pt/WO3 sensors toward NH3 and H2 gases were slightly lower than those of Pt/SnO2 sensor film, and the gas response of SnO2/Pt/WO3 sensor films to H2S gas was almost negligible. The calcification of NH3 and H2 gases was effectively conducted by machine learning algorithms. These evidences manifested that SnO2/Pt/WO3 sensor films are suitable for the actual NH3 detection of NH3 and H2S gases.
科研通智能强力驱动
Strongly Powered by AbleSci AI