MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide

脑老化 老化 神经影像学 队列 心理学 神经科学 认知 医学 计算机科学 人工智能 病理 内科学
作者
Vishnu Bashyam,Güray Erus,Jimit Doshi,Mohamad Habes,Ilya M. Nasrallah,Monica Truelove‐Hill,Dhivya Srinivasan,Liz Mamourian,Raymond Pomponio,Yong Fan,Lenore J. Launer,Colin L. Masters,Paul Maruff,Chuanjun Zhuo,Henry Völzke,Sterling C. Johnson,Jürgen Fripp,Nikolaos Koutsouleris,Theodore D. Satterthwaite,Daniel H. Wolf
出处
期刊:Brain [Oxford University Press]
卷期号:143 (7): 2312-2324 被引量:284
标识
DOI:10.1093/brain/awaa160
摘要

Abstract Deep learning has emerged as a powerful approach to constructing imaging signatures of normal brain ageing as well as of various neuropathological processes associated with brain diseases. In particular, MRI-derived brain age has been used as a comprehensive biomarker of brain health that can identify both advanced and resilient ageing individuals via deviations from typical brain ageing. Imaging signatures of various brain diseases, including schizophrenia and Alzheimer’s disease, have also been identified using machine learning. Prior efforts to derive these indices have been hampered by the need for sophisticated and not easily reproducible processing steps, by insufficiently powered or diversified samples from which typical brain ageing trajectories were derived, and by limited reproducibility across populations and MRI scanners. Herein, we develop and test a sophisticated deep brain network (DeepBrainNet) using a large (n = 11 729) set of MRI scans from a highly diversified cohort spanning different studies, scanners, ages and geographic locations around the world. Tests using both cross-validation and a separate replication cohort of 2739 individuals indicate that DeepBrainNet obtains robust brain-age estimates from these diverse datasets without the need for specialized image data preparation and processing. Furthermore, we show evidence that moderately fit brain ageing models may provide brain age estimates that are most discriminant of individuals with pathologies. This is not unexpected as tightly-fitting brain age models naturally produce brain-age estimates that offer little information beyond age, and loosely fitting models may contain a lot of noise. Our results offer some experimental evidence against commonly pursued tightly-fitting models. We show that the moderately fitting brain age models obtain significantly higher differentiation compared to tightly-fitting models in two of the four disease groups tested. Critically, we demonstrate that leveraging DeepBrainNet, along with transfer learning, allows us to construct more accurate classifiers of several brain diseases, compared to directly training classifiers on patient versus healthy control datasets or using common imaging databases such as ImageNet. We, therefore, derive a domain-specific deep network likely to reduce the need for application-specific adaptation and tuning of generic deep learning networks. We made the DeepBrainNet model freely available to the community for MRI-based evaluation of brain health in the general population and over the lifespan.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
mariawang发布了新的文献求助10
3秒前
万能图书馆应助fash采纳,获得10
3秒前
5秒前
潇湘雪月完成签到,获得积分10
5秒前
6秒前
张宏宇发布了新的文献求助10
6秒前
wangbq完成签到 ,获得积分10
9秒前
橙橙橙橙完成签到 ,获得积分10
11秒前
满当当发布了新的文献求助10
12秒前
djm完成签到,获得积分10
12秒前
自信的勒完成签到,获得积分10
14秒前
14秒前
传奇3应助张宏宇采纳,获得10
16秒前
soyio完成签到 ,获得积分10
16秒前
彭于晏应助要减肥的访旋采纳,获得10
16秒前
8R60d8应助科研通管家采纳,获得10
18秒前
8R60d8应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
18秒前
8R60d8应助科研通管家采纳,获得20
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
8R60d8应助科研通管家采纳,获得10
18秒前
18秒前
烟花应助科研通管家采纳,获得10
19秒前
19秒前
8R60d8应助科研通管家采纳,获得10
19秒前
fash发布了新的文献求助10
23秒前
完美世界应助快乐的烨磊采纳,获得10
23秒前
追梦路上的晓邢完成签到,获得积分10
23秒前
24秒前
欣慰的海之完成签到,获得积分10
24秒前
yyy完成签到 ,获得积分10
25秒前
充电宝应助纪你巴采纳,获得10
27秒前
康谨发布了新的文献求助10
28秒前
29秒前
33秒前
传奇3应助忐忑的鬼神采纳,获得10
33秒前
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779569
求助须知:如何正确求助?哪些是违规求助? 3325031
关于积分的说明 10221139
捐赠科研通 3040176
什么是DOI,文献DOI怎么找? 1668640
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758535