人工智能
聚类分析
模式识别(心理学)
无监督学习
计算机科学
维数之咒
机器学习
降维
监督学习
集合(抽象数据类型)
半监督学习
上下文图像分类
深度学习
特征(语言学)
航程(航空)
图像(数学)
人工神经网络
材料科学
哲学
语言学
复合材料
程序设计语言
作者
Rossella Aversa,Piero Coronica,Cristiano De Nobili,Stefano Cozzini
摘要
In this paper, we report upon our recent work aimed at improving and adapting machine learning algorithms to automatically classify nanoscience images acquired by the Scanning Electron Microscope (SEM). This is done by coupling supervised and unsupervised learning approaches. We first investigate supervised learning on a ten-category data set of images and compare the performance of the different models in terms of training accuracy. Then, we reduce the dimensionality of the features through autoencoders to perform unsupervised learning on a subset of images in a selected range of scales (from 1 μm to 2 μm). Finally, we compare different clustering methods to uncover intrinsic structures in the images.
科研通智能强力驱动
Strongly Powered by AbleSci AI