已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EEG-based Identification of Evidence Accumulation Stages in Decision-Making

心理学 认知 感知 认知心理学 脑电图 多元统计 人工智能 计算机科学 机器学习 神经科学
作者
Hermine S. Berberyan,Leendert van Maanen,Hedderik van Rijn,Jelmer P. Borst
出处
期刊:Journal of Cognitive Neuroscience [MIT Press]
卷期号:33 (3): 510-527 被引量:18
标识
DOI:10.1162/jocn_a_01663
摘要

Dating back to the 19th century, the discovery of processing stages has been of great interest to researchers in cognitive science. The goal of this paper is to demonstrate the validity of a recently developed method, hidden semi-Markov model multivariate pattern analysis (HsMM-MVPA), for discovering stages directly from EEG data, in contrast to classical reaction-time-based methods. To test the validity of stages discovered with the HsMM-MVPA method, we applied it to two relatively simple tasks where the interpretation of processing stages is straightforward. In these visual discrimination EEG data experiments, perceptual processing and decision difficulty were manipulated. The HsMM-MVPA revealed that participants progressed through five cognitive processing stages while performing these tasks. The brain activation of one of those stages was dependent on perceptual processing, whereas the brain activation and the duration of two other stages were dependent on decision difficulty. In addition, evidence accumulation models (EAMs) were used to assess to what extent the results of HsMM-MVPA are comparable to standard reaction-time-based methods. Consistent with the HsMM-MVPA results, EAMs showed that nondecision time varied with perceptual difficulty and drift rate varied with decision difficulty. Moreover, nondecision and decision time of the EAMs correlated highly with the first two and last three stages of the HsMM-MVPA, respectively, indicating that the HsMM-MVPA gives a more detailed description of stages discovered with this more classical method. The results demonstrate that cognitive stages can be robustly inferred with the HsMM-MVPA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我们发布了新的文献求助10
1秒前
1秒前
Turbo完成签到,获得积分10
2秒前
brightface123发布了新的文献求助10
2秒前
4秒前
CNS发布了新的文献求助10
4秒前
可爱的函函应助xiaopan9083采纳,获得10
5秒前
julien发布了新的文献求助10
5秒前
6秒前
zzww发布了新的文献求助10
7秒前
生木完成签到,获得积分10
7秒前
7秒前
奈何完成签到,获得积分10
7秒前
9秒前
9秒前
10秒前
10秒前
10秒前
搞怪的寄凡完成签到,获得积分20
11秒前
余成风完成签到,获得积分10
11秒前
费乐巧完成签到,获得积分10
13秒前
14秒前
顺心未来发布了新的文献求助10
15秒前
所所应助Ggg采纳,获得10
15秒前
王叮叮完成签到 ,获得积分10
16秒前
永和完成签到,获得积分10
16秒前
古风完成签到 ,获得积分10
17秒前
Ray完成签到,获得积分10
17秒前
hxy2019554520完成签到,获得积分10
17秒前
小蘑菇完成签到 ,获得积分10
18秒前
上官若男应助斗牛的番茄采纳,获得10
18秒前
柒_l完成签到 ,获得积分10
19秒前
谭文完成签到 ,获得积分10
20秒前
21秒前
22秒前
tingalan完成签到,获得积分0
22秒前
隐形曼青应助joysa采纳,获得10
23秒前
SciGPT应助漂亮小白菜采纳,获得10
24秒前
今后应助糖拌西红柿采纳,获得10
25秒前
朝霞完成签到,获得积分10
26秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5385100
求助须知:如何正确求助?哪些是违规求助? 4507800
关于积分的说明 14028997
捐赠科研通 4417585
什么是DOI,文献DOI怎么找? 2426609
邀请新用户注册赠送积分活动 1419298
关于科研通互助平台的介绍 1397675