Peptide Gaussian accelerated molecular dynamics (Pep-GaMD): Enhanced sampling and free energy and kinetics calculations of peptide binding

分子动力学 动力学 受体-配体动力学 结合能 伞式取样 化学 高斯分布 生物物理学 计算化学 物理 原子物理学 生物化学 生物 量子力学
作者
Jinan Wang,Yinglong Miao
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:153 (15) 被引量:105
标识
DOI:10.1063/5.0021399
摘要

Peptides mediate up to 40% of known protein-protein interactions in higher eukaryotes and play an important role in cellular signaling. However, it is challenging to simulate both binding and unbinding of peptides and calculate peptide binding free energies through conventional molecular dynamics, due to long biological timescales and extremely high flexibility of the peptides. Based on the Gaussian accelerated molecular dynamics (GaMD) enhanced sampling technique, we have developed a new computational method "Pep-GaMD," which selectively boosts essential potential energy of the peptide in order to effectively model its high flexibility. In addition, another boost potential is applied to the remaining potential energy of the entire system in a dual-boost algorithm. Pep-GaMD has been demonstrated on binding of three model peptides to the SH3 domains. Independent 1 µs dual-boost Pep-GaMD simulations have captured repetitive peptide dissociation and binding events, which enable us to calculate peptide binding thermodynamics and kinetics. The calculated binding free energies and kinetic rate constants agreed very well with available experimental data. Furthermore, the all-atom Pep-GaMD simulations have provided important insights into the mechanism of peptide binding to proteins that involves long-range electrostatic interactions and mainly conformational selection. In summary, Pep-GaMD provides a highly efficient, easy-to-use approach for unconstrained enhanced sampling and calculations of peptide binding free energies and kinetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yimei发布了新的文献求助10
3秒前
perseverance完成签到,获得积分10
5秒前
沉默南露发布了新的文献求助10
6秒前
6秒前
8秒前
perseverance发布了新的文献求助10
9秒前
10秒前
沈家宁发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
漂亮白云完成签到 ,获得积分10
13秒前
于七发布了新的文献求助10
14秒前
16秒前
17秒前
李堃发布了新的文献求助30
17秒前
星辰大海应助WFLLL采纳,获得10
18秒前
18秒前
芒果好高完成签到,获得积分10
19秒前
19秒前
穆一手完成签到 ,获得积分10
19秒前
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
星辰大海应助科研通管家采纳,获得10
19秒前
Hello应助科研通管家采纳,获得10
19秒前
天天快乐应助科研通管家采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
19秒前
若有光发布了新的文献求助10
20秒前
jiwen发布了新的文献求助10
23秒前
李爱国应助光亮的依凝采纳,获得10
24秒前
若有光完成签到,获得积分10
26秒前
义气的访波完成签到 ,获得积分10
26秒前
26秒前
lalala完成签到,获得积分10
26秒前
27秒前
动漫大师发布了新的文献求助10
27秒前
罗布林卡发布了新的文献求助10
28秒前
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777470
求助须知:如何正确求助?哪些是违规求助? 3322795
关于积分的说明 10211897
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667178
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133