A low-density SNP genotyping panel for the accurate prediction of cattle breeds

繁殖 SNP基因分型 SNP公司 选择(遗传算法) 生物 基因分型 单核苷酸多态性 人口 肉牛 遗传学 计算生物学 计算机科学 基因型 人工智能 基因 医学 环境卫生
作者
Antonio Reverter,Nicholas J. Hudson,Sean McWilliam,Pâmela A. Alexandre,Yutao Li,Robert B. Barlow,Nina Welti,Hans D. Daetwyler,Laercio R. Porto-Neto,Sonja Dominik
出处
期刊:Journal of Animal Science [Oxford University Press]
卷期号:98 (11) 被引量:7
标识
DOI:10.1093/jas/skaa337
摘要

Abstract Genomic tools to better define breed composition in agriculturally important species have sparked scientific and commercial industry interest. Knowledge of breed composition can inform multiple scientifically important decisions of industry application including DNA marker-assisted selection, identification of signatures of selection, and inference of product provenance to improve supply chain integrity. Genomic tools are expensive but can be economized by deploying a relatively small number of highly informative single-nucleotide polymorphisms (SNP) scattered evenly across the genome. Using resources from the 1000 Bull Genomes Project we established calibration (more stringent quality criteria; N = 1,243 cattle) and validation (less stringent; N = 864) data sets representing 17 breeds derived from both taurine and indicine bovine subspecies. Fifteen successively smaller panels (from 500,000 to 50 SNP) were built from those SNP in the calibration data that increasingly satisfied 2 criteria, high differential allele frequencies across the breeds as measured by average Euclidean distance (AED) and high uniformity (even spacing) across the physical genome. Those SNP awarded the highest AED were in or near genes previously identified as important signatures of selection in cattle such as LCORL, NCAPG, KITLG, and PLAG1. For each panel, the genomic breed composition (GBC) of each animal in the validation dataset was estimated using a linear regression model. A systematic exploration of the predictive accuracy of the various sized panels was then undertaken on the validation population using 3 benchmarking approaches: (1) % error (expressed relative to the estimated GBC made from over 1 million SNP), (2) % breed misassignment (expressed relative to each individual’s breed recorded), and (3) Shannon’s entropy of estimated GBC across the 17 target breeds. Our analyses suggest that a panel of just 250 SNP represents an adequate balance between accuracy and cost—only modest gains in accuracy are made as one increases panel density beyond this point.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aurora发布了新的文献求助20
1秒前
喃喃发布了新的文献求助10
2秒前
2秒前
隐形曼青应助时尚叫兽采纳,获得10
2秒前
哲哲完成签到,获得积分10
2秒前
阳光芷蝶完成签到,获得积分10
2秒前
2秒前
3秒前
遇见发布了新的文献求助10
4秒前
4秒前
。。。发布了新的文献求助20
4秒前
5秒前
6秒前
天天快乐应助hqc采纳,获得10
6秒前
filter发布了新的文献求助10
7秒前
西风凌月发布了新的文献求助10
7秒前
泡沫发布了新的文献求助10
7秒前
huhu发布了新的文献求助10
7秒前
HouYv完成签到 ,获得积分10
8秒前
8秒前
9秒前
10秒前
si发布了新的文献求助10
10秒前
10秒前
dddddd发布了新的文献求助10
11秒前
11秒前
满眼星辰发布了新的文献求助10
11秒前
认真烨华发布了新的文献求助10
11秒前
小懒虫完成签到,获得积分20
13秒前
bkagyin应助pa采纳,获得10
14秒前
文艺醉波发布了新的文献求助10
14秒前
西风凌月完成签到,获得积分10
15秒前
16秒前
眯眯眼的世界完成签到,获得积分10
16秒前
传奇3应助糯糯采纳,获得10
16秒前
CodeCraft应助一木采纳,获得10
17秒前
威武的匕发布了新的文献求助10
17秒前
充电宝应助泡沫采纳,获得10
17秒前
天选之子发布了新的文献求助10
18秒前
慕青应助满眼星辰采纳,获得10
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Moisture state and volatile flavor behavior characterization of Naematelia aurantialba during postharvest in modified atmosphere packaging storage after treated with ultraviolet radiation C 400
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810928
求助须知:如何正确求助?哪些是违规求助? 3355371
关于积分的说明 10375682
捐赠科研通 3072163
什么是DOI,文献DOI怎么找? 1687237
邀请新用户注册赠送积分活动 811523
科研通“疑难数据库(出版商)”最低求助积分说明 766677