Survey on rain removal from videos or a single image

计算机科学 水准点(测量) 一般化 图像(数学) 领域(数学) 人工智能 机器学习 数据挖掘 数学 地理 数学分析 大地测量学 纯数学
作者
Hong Wang,Yichen Wu,Minghan Li,Qian Zhao,Deyu Meng
出处
期刊:Science China Information Sciences [Springer Nature]
卷期号:65 (1) 被引量:49
标识
DOI:10.1007/s11432-020-3225-9
摘要

Rain can cause performance degradation of outdoor computer vision tasks. Thus, the exploration of rain removal from videos or a single image has drawn considerable attention in the field of image processing. Recently, various deraining methodologies have been proposed. However, no comprehensive survey work has yet been conducted to summarize existing deraining algorithms and quantitatively compare their generalization ability, and especially, no off-the-shelf toolkit exists for accumulating and categorizing recent representative methods for easy performance reproduction and deraining capability evaluation. In this regard, herein, we present a comprehensive overview of existing video and single image deraining methods as well as reproduce and evaluate current state-of-the-art deraining methods. In particular, these approaches are mainly classified into model- and deep-learning-based methods, and more elaborate branches of each method are presented. Inherent abilities, especially generalization performance, of the state-of-the-art methods have been both quantitatively and visually analyzed through thorough experiments conducted on synthetic and real benchmark datasets. Moreover, to facilitate the reproduction of existing deraining methods for general users, we present a comprehensive repository with detailed classification, including direct links to 85 deraining papers, 24 relevant project pages, source codes of 12 and 25 algorithms for video and single image deraining, respectively, 5 and 10 real and synthesized datasets, respectively, and 7 frequently used image quality evaluation metrics, along with the corresponding computation codes. Research limitations worthy of further exploration have also been discussed for future research along this direction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺顺黎黎发布了新的文献求助10
1秒前
科目三应助哈哈采纳,获得10
1秒前
活力的柜子完成签到,获得积分10
1秒前
静静发布了新的文献求助10
1秒前
飞翔的发布了新的文献求助10
1秒前
北栀发布了新的文献求助10
3秒前
3秒前
执着听云完成签到,获得积分20
3秒前
4秒前
5秒前
6秒前
小小怪下士完成签到,获得积分10
6秒前
顺顺黎黎完成签到,获得积分10
8秒前
zjw完成签到,获得积分10
8秒前
隐形曼青应助ZYY采纳,获得10
8秒前
SciGPT应助heima采纳,获得10
8秒前
夜斗发布了新的文献求助10
8秒前
NexusExplorer应助耿昭采纳,获得10
9秒前
9秒前
kebing发布了新的文献求助30
9秒前
狂野晓绿完成签到,获得积分10
9秒前
蔡亦星完成签到,获得积分10
9秒前
Lee完成签到,获得积分20
9秒前
zzz发布了新的文献求助10
10秒前
ding应助望着拥有采纳,获得10
10秒前
黑猫警长发布了新的文献求助30
10秒前
10秒前
skr完成签到,获得积分10
11秒前
orixero应助小小怪下士采纳,获得10
11秒前
12秒前
小荔枝发布了新的文献求助10
13秒前
禾口王完成签到,获得积分10
13秒前
圆满组合完成签到,获得积分10
14秒前
qxy完成签到 ,获得积分10
14秒前
14秒前
15秒前
漂亮的盼望关注了科研通微信公众号
15秒前
zhangliangfu完成签到 ,获得积分10
15秒前
15秒前
孙老师发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4521838
求助须知:如何正确求助?哪些是违规求助? 3963676
关于积分的说明 12285262
捐赠科研通 3627318
什么是DOI,文献DOI怎么找? 1996219
邀请新用户注册赠送积分活动 1032782
科研通“疑难数据库(出版商)”最低求助积分说明 922662