亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Thick cloud removal in Landsat images based on autoregression of Landsat time-series data

遥感 像素 时间序列 云量 专题制图器 参考数据 云计算 土地覆盖 自回归模型 地质学 环境科学 卫星图像 计算机科学 数据挖掘 人工智能 土地利用 数学 统计 机器学习 操作系统 土木工程 工程类
作者
Ruyin Cao,Yang Chen,Jin Chen,Xiaolin Zhu,Miaogen Shen
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:249: 112001-112001 被引量:69
标识
DOI:10.1016/j.rse.2020.112001
摘要

Abstract Thick-cloud contamination causes serious missing data in Landsat images, which substantially limits applications of these images. To remove thick clouds from Landsat data, the most popular methods employ auxiliary data such as a cloud-free image of the same area acquired on another date (referred to as the “reference image”). However, the performance of most previous methods strongly depends on the usefulness of the specific reference image, but in some cases high-quality cloud-free reference images are rarely available. In addition, some of these methods ignore the use of partially cloud-contaminated reference images, but clear pixels in these images can be very useful. To address these issues, a new cloud-removal method (AutoRegression to Remove Clouds (ARRC)) has been developed in this study. The most important improvement of ARRC is that it considers autocorrelation of Landsat time-series data and employs multi-year Landsat images including partially cloud-contaminated images in the cloud-removing process. ARRC also addresses the cases in which autocorrelation of Landsat time series might be adversely affected by abrupt land cover changes over multiple years. We compared ARRC with the widely-used MNSPI (modified neighborhood similar pixel interpolator) method at four challenging sites, including an urban area in Beijing and three croplands, in the North China Plain, northeastern Vietnam, and Iowa, USA. Results from the cloud-simulated images showed that ARRC performed better than MNSPI and achieved lower RMSE values (e.g., 0.02129 vs. 0.03005, 0.03293 vs. 0.04725, 0.02740 vs. 0.03556, and 0.03303 vs. 0.03973 in the near-infrared band at the four testing sites, respectively). Moreover, the experiments demonstrated improved performance when clear pixels in partially cloud-contaminated images were used by ARRC. Furthermore, cloud-free images reconstructed by ARRC were visually better than those reconstructed by MNSPI when both approaches were applied to actual cloud-contaminated Landsat images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dreamhappy完成签到,获得积分10
42秒前
万能图书馆应助酷酷白萱采纳,获得10
43秒前
1分钟前
酷酷白萱发布了新的文献求助10
1分钟前
米诺凡完成签到,获得积分10
1分钟前
酷酷白萱完成签到,获得积分10
1分钟前
1分钟前
1分钟前
米诺凡发布了新的文献求助10
1分钟前
所所应助dawn采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
酷酷一笑发布了新的文献求助10
2分钟前
2分钟前
竹青发布了新的文献求助10
2分钟前
chaotianjiao完成签到 ,获得积分10
3分钟前
奔跑的小熊完成签到 ,获得积分10
3分钟前
Aimee完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
dawn发布了新的文献求助10
3分钟前
4分钟前
4分钟前
大饼完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
竹青完成签到,获得积分10
4分钟前
李李李应助Sandy采纳,获得30
5分钟前
orixero应助科研通管家采纳,获得10
5分钟前
自信号厂完成签到 ,获得积分10
6分钟前
张童鞋完成签到 ,获得积分10
6分钟前
7分钟前
QCB完成签到 ,获得积分10
7分钟前
7分钟前
8分钟前
9分钟前
坚强依云完成签到,获得积分10
9分钟前
souther完成签到,获得积分0
9分钟前
CipherSage应助野性的柠檬采纳,获得10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
(The) Founding Fathers of America 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4457907
求助须知:如何正确求助?哪些是违规求助? 3922610
关于积分的说明 12171663
捐赠科研通 3573992
什么是DOI,文献DOI怎么找? 1963313
邀请新用户注册赠送积分活动 1002422
科研通“疑难数据库(出版商)”最低求助积分说明 897113