Thick cloud removal in Landsat images based on autoregression of Landsat time-series data

遥感 像素 时间序列 云量 专题制图器 参考数据 云计算 土地覆盖 自回归模型 地质学 环境科学 卫星图像 计算机科学 数据挖掘 人工智能 土地利用 数学 统计 机器学习 操作系统 土木工程 工程类
作者
Ruyin Cao,Yang Chen,Jin Chen,Xiaolin Zhu,Miaogen Shen
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:249: 112001-112001 被引量:64
标识
DOI:10.1016/j.rse.2020.112001
摘要

Abstract Thick-cloud contamination causes serious missing data in Landsat images, which substantially limits applications of these images. To remove thick clouds from Landsat data, the most popular methods employ auxiliary data such as a cloud-free image of the same area acquired on another date (referred to as the “reference image”). However, the performance of most previous methods strongly depends on the usefulness of the specific reference image, but in some cases high-quality cloud-free reference images are rarely available. In addition, some of these methods ignore the use of partially cloud-contaminated reference images, but clear pixels in these images can be very useful. To address these issues, a new cloud-removal method (AutoRegression to Remove Clouds (ARRC)) has been developed in this study. The most important improvement of ARRC is that it considers autocorrelation of Landsat time-series data and employs multi-year Landsat images including partially cloud-contaminated images in the cloud-removing process. ARRC also addresses the cases in which autocorrelation of Landsat time series might be adversely affected by abrupt land cover changes over multiple years. We compared ARRC with the widely-used MNSPI (modified neighborhood similar pixel interpolator) method at four challenging sites, including an urban area in Beijing and three croplands, in the North China Plain, northeastern Vietnam, and Iowa, USA. Results from the cloud-simulated images showed that ARRC performed better than MNSPI and achieved lower RMSE values (e.g., 0.02129 vs. 0.03005, 0.03293 vs. 0.04725, 0.02740 vs. 0.03556, and 0.03303 vs. 0.03973 in the near-infrared band at the four testing sites, respectively). Moreover, the experiments demonstrated improved performance when clear pixels in partially cloud-contaminated images were used by ARRC. Furthermore, cloud-free images reconstructed by ARRC were visually better than those reconstructed by MNSPI when both approaches were applied to actual cloud-contaminated Landsat images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
体贴忆秋发布了新的文献求助30
1秒前
个性笑白发布了新的文献求助10
1秒前
wanci应助一向光年有限身采纳,获得10
1秒前
1秒前
1秒前
在水一方应助北落师门采纳,获得10
1秒前
1秒前
2秒前
2秒前
dqh发布了新的文献求助10
2秒前
香蕉觅云应助科研小和尚采纳,获得10
2秒前
gqb发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
qiu完成签到,获得积分10
3秒前
3秒前
mmm发布了新的文献求助10
4秒前
乐乐乐乐乐乐应助铜锣烧采纳,获得10
4秒前
dandan完成签到,获得积分10
4秒前
xcf6653发布了新的文献求助10
4秒前
5秒前
星辰大海应助司空元正采纳,获得10
5秒前
6秒前
思源应助土豆炖大锅采纳,获得10
6秒前
甜蜜的楷瑞应助小高同学采纳,获得10
6秒前
晓晓发布了新的文献求助10
7秒前
褚青筠发布了新的文献求助10
7秒前
研友_Z30GJ8发布了新的文献求助10
7秒前
希望天下0贩的0应助nipoo采纳,获得10
7秒前
Lyndonz7u发布了新的文献求助10
7秒前
开朗的板凳完成签到,获得积分10
7秒前
8秒前
学术zha发布了新的文献求助10
8秒前
孟子发布了新的文献求助10
8秒前
凌波丽完成签到,获得积分10
8秒前
明理明杰完成签到,获得积分10
9秒前
9秒前
Famiglistmo完成签到,获得积分10
9秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4050741
求助须知:如何正确求助?哪些是违规求助? 3589042
关于积分的说明 11405257
捐赠科研通 3315283
什么是DOI,文献DOI怎么找? 1823686
邀请新用户注册赠送积分活动 895536
科研通“疑难数据库(出版商)”最低求助积分说明 816894