Thick cloud removal in Landsat images based on autoregression of Landsat time-series data

遥感 像素 时间序列 云量 专题制图器 参考数据 云计算 土地覆盖 自回归模型 地质学 环境科学 卫星图像 计算机科学 数据挖掘 人工智能 土地利用 数学 统计 机器学习 操作系统 土木工程 工程类
作者
Ruyin Cao,Yang Chen,Jin Chen,Xiaolin Zhu,Miaogen Shen
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:249: 112001-112001 被引量:63
标识
DOI:10.1016/j.rse.2020.112001
摘要

Abstract Thick-cloud contamination causes serious missing data in Landsat images, which substantially limits applications of these images. To remove thick clouds from Landsat data, the most popular methods employ auxiliary data such as a cloud-free image of the same area acquired on another date (referred to as the “reference image”). However, the performance of most previous methods strongly depends on the usefulness of the specific reference image, but in some cases high-quality cloud-free reference images are rarely available. In addition, some of these methods ignore the use of partially cloud-contaminated reference images, but clear pixels in these images can be very useful. To address these issues, a new cloud-removal method (AutoRegression to Remove Clouds (ARRC)) has been developed in this study. The most important improvement of ARRC is that it considers autocorrelation of Landsat time-series data and employs multi-year Landsat images including partially cloud-contaminated images in the cloud-removing process. ARRC also addresses the cases in which autocorrelation of Landsat time series might be adversely affected by abrupt land cover changes over multiple years. We compared ARRC with the widely-used MNSPI (modified neighborhood similar pixel interpolator) method at four challenging sites, including an urban area in Beijing and three croplands, in the North China Plain, northeastern Vietnam, and Iowa, USA. Results from the cloud-simulated images showed that ARRC performed better than MNSPI and achieved lower RMSE values (e.g., 0.02129 vs. 0.03005, 0.03293 vs. 0.04725, 0.02740 vs. 0.03556, and 0.03303 vs. 0.03973 in the near-infrared band at the four testing sites, respectively). Moreover, the experiments demonstrated improved performance when clear pixels in partially cloud-contaminated images were used by ARRC. Furthermore, cloud-free images reconstructed by ARRC were visually better than those reconstructed by MNSPI when both approaches were applied to actual cloud-contaminated Landsat images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助十月采纳,获得10
刚刚
3秒前
5秒前
6秒前
淡定的香菱完成签到,获得积分10
7秒前
7秒前
shu发布了新的文献求助10
8秒前
10秒前
吴谷杂粮发布了新的文献求助10
10秒前
于听枫完成签到 ,获得积分10
12秒前
马大王发布了新的文献求助10
12秒前
弓雷雷完成签到,获得积分10
13秒前
dkxy完成签到,获得积分10
14秒前
CipherSage应助科研通管家采纳,获得10
15秒前
datang完成签到,获得积分10
15秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
iNk应助科研通管家采纳,获得10
15秒前
iNk应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
16秒前
iNk应助科研通管家采纳,获得10
16秒前
iNk应助科研通管家采纳,获得20
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
龙猫爱看书完成签到,获得积分10
17秒前
shu完成签到,获得积分10
17秒前
火焰向上完成签到,获得积分10
18秒前
蓝色水晶完成签到,获得积分10
18秒前
亭语完成签到 ,获得积分10
26秒前
30秒前
30秒前
人间草木完成签到,获得积分10
31秒前
小鱼完成签到,获得积分10
33秒前
樱桃小丸子完成签到 ,获得积分20
35秒前
John发布了新的文献求助10
35秒前
Gaotingting发布了新的文献求助10
36秒前
彬彬完成签到,获得积分10
38秒前
关关完成签到 ,获得积分10
38秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801432
求助须知:如何正确求助?哪些是违规求助? 3347164
关于积分的说明 10332162
捐赠科研通 3063465
什么是DOI,文献DOI怎么找? 1681720
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763852