统计
逆概率加权
平滑的
分位数回归
加权
协变量
分位数
观测误差
甲骨文公司
估计员
计算机科学
分位数函数
蒙特卡罗方法
回归
数学
特征选择
回归分析
缺少数据
人工智能
概率密度函数
累积分布函数
医学
软件工程
放射科
作者
Yongxin Bai,Maozai Tian,Man‐Lai Tang,Wing Yan Lee
标识
DOI:10.1177/0962280220941533
摘要
In this paper, we consider variable selection for ultra-high dimensional quantile regression model with missing data and measurement errors in covariates. Specifically, we correct the bias in the loss function caused by measurement error by applying the orthogonal quantile regression approach and remove the bias caused by missing data using the inverse probability weighting. A nonconvex Atan penalized estimation method is proposed for simultaneous variable selection and estimation. With the proper choice of the regularization parameter and under some relaxed conditions, we show that the proposed estimate enjoys the oracle properties. The choice of smoothing parameters is also discussed. The performance of the proposed variable selection procedure is assessed by Monte Carlo simulation studies. We further demonstrate the proposed procedure with a breast cancer data set.
科研通智能强力驱动
Strongly Powered by AbleSci AI