足细胞
线粒体生物发生
TFAM公司
厌氧糖酵解
糖酵解
生物
细胞生物学
线粒体
线粒体融合
肾小球硬化
内科学
肾
内分泌学
新陈代谢
线粒体DNA
生物化学
医学
蛋白尿
基因
作者
Paul T. Brinkkoetter,Tillmann Bork,Sarah Salou,Wei Liang,Athanasia Mizi,Cem Özel,Sybille Koehler,Henning Hagmann,Christina Ising,Alexander Kuczkowski,Svenia Schnyder,Ahmed Abed,Bernhard Schermer,Thomas Benzing,Oliver Kretz,Victor G. Puelles,Simon Lagies,Manuel Schlimpert,Bernd Kammerer,Christoph Handschin
出处
期刊:Cell Reports
[Cell Press]
日期:2019-04-01
卷期号:27 (5): 1551-1566.e5
被引量:136
标识
DOI:10.1016/j.celrep.2019.04.012
摘要
The cellular responses induced by mitochondrial dysfunction remain elusive. Intrigued by the lack of almost any glomerular phenotype in patients with profound renal ischemia, we comprehensively investigated the primary sources of energy of glomerular podocytes. Combining functional measurements of oxygen consumption rates, glomerular metabolite analysis, and determination of mitochondrial density of podocytes in vivo, we demonstrate that anaerobic glycolysis and fermentation of glucose to lactate represent the key energy source of podocytes. Under physiological conditions, we could detect neither a developmental nor late-onset pathological phenotype in podocytes with impaired mitochondrial biogenesis machinery, defective mitochondrial fusion-fission apparatus, or reduced mtDNA stability and transcription caused by podocyte-specific deletion of Pgc-1α, Drp1, or Tfam, respectively. Anaerobic glycolysis represents the predominant metabolic pathway of podocytes. These findings offer a strategy to therapeutically interfere with the enhanced podocyte metabolism in various progressive kidney diseases, such as diabetic nephropathy or focal segmental glomerulosclerosis (FSGS).
科研通智能强力驱动
Strongly Powered by AbleSci AI