Electrocardiogram generation with a bidirectional LSTM-CNN generative adversarial network

鉴别器 自编码 计算机科学 人工智能 发电机(电路理论) 卷积神经网络 循环神经网络 深度学习 生成对抗网络 模式识别(心理学) 人工神经网络 机器学习 物理 功率(物理) 探测器 电信 量子力学
作者
Fei Zhu,Fei Ye,Yuchen Fu,Quan Liu,Bairong Shen
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:9 (1) 被引量:96
标识
DOI:10.1038/s41598-019-42516-z
摘要

Heart disease is a malignant threat to human health. Electrocardiogram (ECG) tests are used to help diagnose heart disease by recording the heart’s activity. However, automated medical-aided diagnosis with computers usually requires a large volume of labeled clinical data without patients' privacy to train the model, which is an empirical problem that still needs to be solved. To address this problem, we propose a generative adversarial network (GAN), which is composed of a bidirectional long short-term memory(LSTM) and convolutional neural network(CNN), referred as BiLSTM-CNN,to generate synthetic ECG data that agree with existing clinical data so that the features of patients with heart disease can be retained. The model includes a generator and a discriminator, where the generator employs the two layers of the BiLSTM networks and the discriminator is based on convolutional neural networks. The 48 ECG records from individuals of the MIT-BIH database were used to train the model. We compared the performance of our model with two other generative models, the recurrent neural network autoencoder(RNN-AE) and the recurrent neural network variational autoencoder (RNN-VAE). The results showed that the loss function of our model converged to zero the fastest. We also evaluated the loss of the discriminator of GANs with different combinations of generator and discriminator. The results indicated that BiLSTM-CNN GAN could generate ECG data with high morphological similarity to real ECG recordings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫小曼完成签到,获得积分10
1秒前
maox1aoxin应助damnxas采纳,获得50
1秒前
JamesPei应助亲爱的冯老师采纳,获得10
2秒前
Bibo完成签到,获得积分10
2秒前
3秒前
小木完成签到,获得积分10
3秒前
4秒前
小蒋完成签到 ,获得积分10
4秒前
酷波er应助稳稳稳采纳,获得10
4秒前
5秒前
爱听歌的洋葱完成签到,获得积分10
5秒前
今后应助123456采纳,获得10
6秒前
初心完成签到 ,获得积分10
6秒前
7秒前
7秒前
8秒前
Final发布了新的文献求助10
8秒前
8秒前
xxx完成签到,获得积分10
9秒前
小辰关注了科研通微信公众号
9秒前
香蕉惜儿发布了新的文献求助10
10秒前
10秒前
共享精神应助xh采纳,获得10
11秒前
querido应助柒咩咩采纳,获得10
11秒前
傻妞完成签到,获得积分10
12秒前
professor完成签到,获得积分10
12秒前
xxx发布了新的文献求助10
12秒前
都是发布了新的文献求助10
12秒前
图喵喵完成签到,获得积分10
13秒前
正直听芹完成签到,获得积分10
13秒前
13秒前
13秒前
15秒前
15秒前
16秒前
酷波er应助Final采纳,获得10
16秒前
搜集达人应助愤怒的雨莲采纳,获得10
16秒前
xiaoyu完成签到,获得积分10
17秒前
柠柚萌不萌完成签到,获得积分10
17秒前
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811156
求助须知:如何正确求助?哪些是违规求助? 3355532
关于积分的说明 10376459
捐赠科研通 3072336
什么是DOI,文献DOI怎么找? 1687391
邀请新用户注册赠送积分活动 811622
科研通“疑难数据库(出版商)”最低求助积分说明 766715