有机太阳能电池
梯度升压
轨道能级差
Boosting(机器学习)
分子轨道
有机分子
原子轨道
材料科学
激子
分子
化学物理
能量转换效率
人工神经网络
维数之咒
计算机科学
生物系统
人工智能
随机森林
物理
电子
复合材料
光电子学
聚合物
量子力学
生物
作者
Harikrishna Sahu,Weining Rao,Alessandro Troisi,Haibo Ma
标识
DOI:10.1002/aenm.201801032
摘要
Abstract To design efficient materials for organic photovoltaics (OPVs), it is essential to identify the largest number of parameters that control their properties and build a model using these parameters (known as descriptors) for the prediction of the power conversion efficiency (PCE). By constructing a dataset for 280 small molecule OPV systems, it is found that for all high‐performing devices, frontier molecular orbitals of donor molecules are nearly degenerated and in such cases, orbitals other than just highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are involved in exciton formation, exciton dissociation, and hole transport processes influencing the macroscopic properties of OPVs. Machine learning approaches, including random forest, gradient boosting, deep neural network are used to build models for the prediction of PCE using 13 important microscopic properties of organic materials as descriptors. Quite impressive performance of the gradient boosting model (Pearson's coefficient = 0.79) indicates that it can certainly be applied to high‐throughput virtual screening of promising new donor molecules for high‐efficiency OPVs.
科研通智能强力驱动
Strongly Powered by AbleSci AI