Applications of neural network models for structural health monitoring based on derived modal properties

人工智能 机器学习 鉴定(生物学) 模式识别(心理学) 模态分析 深度学习
作者
Chia-Ming Chang,Tzu-Kang Lin,Chih Wei Chang
出处
期刊:Measurement [Elsevier BV]
卷期号:129: 457-470 被引量:43
标识
DOI:10.1016/j.measurement.2018.07.051
摘要

Abstract Structural health monitoring is required to interpret damaged structures in terms of locations and severity, even remaining performance of the damaged members. Therefore, this study proposes a new artificial intelligence-based structural health monitoring strategy based on neural network modeling. A neural network model is developed in accordance with a numerical model which is derived from the identified modal properties under ambient vibrations. The stochastic subspace system identification is first implemented to derive the natural frequencies and mode shapes of a healthy structure. These natural frequencies and mode shapes are then employed to derive a simplified model of this structure, allowing changing stiffness terms to construct various damage patterns. A neural network model is trained and built by the modal properties of the structure with these damage patterns. After a critical event occurs (e.g., earthquakes), this neural network model can be employed to estimate the damage patterns in terms of stiffness reduction. In this study, a numerical example consisting of two damage scenarios is carried out. This example studies a seven-story building with a single and multiple damaged columns in order to evaluate performance of the proposed structural health monitoring strategy. Moreover, the proposed structural health monitoring strategy is also applied to an experimental test of a scaled twin-tower building with weak braces in some floors. Partially modal properties of the structure are obtained from the stochastic subspace system identification, while a simplified model is developed in accordance to the identified modal properties of the healthy building. Then, a neural network model is established based on this simplified model. After seismic events, this neural network model is employed to carry damage detection of this building in terms of damage locations and levels. As a result, the proposed artificial intelligence-based structural health monitoring strategy is quite effective to locate damage if the identified modal properties are relatively accurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路瑶瑶完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
1秒前
乐乐应助沅沅采纳,获得10
2秒前
科研通AI2S应助卢一采纳,获得10
2秒前
绿色催化发布了新的文献求助10
2秒前
wang发布了新的文献求助10
3秒前
打打应助cc采纳,获得10
3秒前
Ava应助dream采纳,获得10
3秒前
3秒前
兴奋晟睿发布了新的文献求助10
4秒前
jin发布了新的文献求助10
4秒前
5秒前
Hilda007发布了新的文献求助10
5秒前
kg完成签到,获得积分10
5秒前
酷波er应助ljy采纳,获得10
5秒前
6秒前
靓丽的沁完成签到 ,获得积分10
6秒前
6秒前
LILI2完成签到,获得积分10
6秒前
xiaojie2024发布了新的文献求助10
7秒前
从未停步发布了新的文献求助10
7秒前
局内人完成签到,获得积分10
8秒前
思源应助霜叶采纳,获得10
8秒前
8秒前
喜多喜多完成签到,获得积分10
8秒前
luf发布了新的文献求助10
9秒前
无情初兰完成签到,获得积分10
10秒前
9C发布了新的文献求助10
10秒前
我是老大应助迅速的岩采纳,获得10
10秒前
Owen应助jin采纳,获得10
10秒前
10秒前
欢喜的元霜完成签到,获得积分10
10秒前
lulu完成签到,获得积分10
10秒前
科研通AI5应助wait采纳,获得10
11秒前
xhsz1111发布了新的文献求助10
12秒前
12秒前
mmm完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072388
求助须知:如何正确求助?哪些是违规求助? 4292768
关于积分的说明 13375916
捐赠科研通 4113855
什么是DOI,文献DOI怎么找? 2252710
邀请新用户注册赠送积分活动 1257518
关于科研通互助平台的介绍 1190266