Power and Area Efficient Cascaded Effectless GDI Approximate Adder for Accelerating Multimedia Applications Using Deep Learning Model

加法器 计算机科学 CMOS芯片 高效能源利用 电子工程 逻辑门 计算机工程 晶体管 电子线路 传播延迟 计算机硬件 算法 电气工程 工程类 计算机网络 电压
作者
M. Nagarajan,R. Muthaiah,Yuvaraja Teekaraman,Ramya Kuppusamy,Arun Radhakrishnan
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2022: 1-15 被引量:5
标识
DOI:10.1155/2022/3505439
摘要

Approximate computing is an upsurging technique to accelerate the process through less computational effort while keeping admissible accuracy of error-tolerant applications such as multimedia and deep learning. Inheritance properties of the deep learning process aid the designer to abridge the circuitry and also to increase the computation speed at the cost of the accuracy of results. High computational complexity and low-power requirement of portable devices in the dark silicon era sought suitable alternate for Complementary Metal Oxide Semiconductor (CMOS) technology. Gate Diffusion Input (GDI) logic is one of the prompting alternatives to CMOS logic to reduce transistors and low-power design. In this work, a novel energy and area efficient 1-bit GDI-based full swing Energy and Area efficient Full Adder (EAFA) with minimum error distance is proposed. The proposed architecture was constructed to mitigate the cascaded effect problem in GDI-based circuits. It is proved by extending the proposed 1-bit GDI-based adder for different 16-bit Energy and Area Efficient High-Speed Error-Tolerant Adders (EAHSETA) segmented as accurate and inaccurate adder circuits. The proposed adder’s design metrics in terms of delay, area, and power dissipation are verified through simulation using the Cadence tool. The proposed logic is deployed to accelerate the convolution process in the Low-Weight Digit Detector neural network for real-time handwritten digit classification application as a case study in the Intel Cyclone IV Field Programmable Gate Array (FPGA). The results confirm that our proposed EAHSETA occupies fewer logic elements and improves operation speed with the speed-up factor of 1.29 than other similar techniques while producing 95% of classification accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feiyang发布了新的文献求助10
3秒前
大龙哥886应助bottlemonster采纳,获得10
4秒前
JOKY完成签到 ,获得积分10
6秒前
慧子发布了新的文献求助30
7秒前
含蓄的魔镜完成签到,获得积分10
8秒前
9秒前
iknj完成签到,获得积分10
10秒前
自然惊蛰完成签到,获得积分10
13秒前
小马甲应助feiyang采纳,获得10
13秒前
顺利滑板发布了新的文献求助10
16秒前
小纸人完成签到,获得积分10
20秒前
所所应助健壮的绿凝采纳,获得10
23秒前
CodeCraft应助Bob采纳,获得10
25秒前
多摩川的烟花少年完成签到,获得积分10
25秒前
斯文败类应助自然惊蛰采纳,获得10
31秒前
科研通AI6应助默默善愁采纳,获得10
33秒前
G哟X完成签到 ,获得积分10
42秒前
云水雾心发布了新的文献求助10
42秒前
lvpl发布了新的文献求助10
44秒前
HAN完成签到,获得积分10
45秒前
Xjx6519发布了新的文献求助10
46秒前
believe发布了新的文献求助10
46秒前
水星摸鱼完成签到,获得积分10
50秒前
清脆靳发布了新的文献求助10
55秒前
星辰大海应助云水雾心采纳,获得10
56秒前
56秒前
56秒前
香蕉觅云应助李晨旭采纳,获得10
57秒前
科研通AI2S应助暖吱采纳,获得10
58秒前
思源应助77采纳,获得10
1分钟前
一百度黑发布了新的文献求助10
1分钟前
段醒醒发布了新的文献求助10
1分钟前
bkagyin应助Jere采纳,获得20
1分钟前
1分钟前
一百度黑完成签到,获得积分10
1分钟前
浮游应助lxl采纳,获得10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
Mic应助科研通管家采纳,获得10
1分钟前
在水一方应助科研通管家采纳,获得30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557634
求助须知:如何正确求助?哪些是违规求助? 4642696
关于积分的说明 14668874
捐赠科研通 4584158
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488842
关于科研通互助平台的介绍 1459533