加法器
计算机科学
CMOS芯片
高效能源利用
电子工程
逻辑门
计算机工程
晶体管
电子线路
传播延迟
计算机硬件
算法
电气工程
工程类
计算机网络
电压
作者
M. Nagarajan,R. Muthaiah,Yuvaraja Teekaraman,Ramya Kuppusamy,Arun Radhakrishnan
摘要
Approximate computing is an upsurging technique to accelerate the process through less computational effort while keeping admissible accuracy of error-tolerant applications such as multimedia and deep learning. Inheritance properties of the deep learning process aid the designer to abridge the circuitry and also to increase the computation speed at the cost of the accuracy of results. High computational complexity and low-power requirement of portable devices in the dark silicon era sought suitable alternate for Complementary Metal Oxide Semiconductor (CMOS) technology. Gate Diffusion Input (GDI) logic is one of the prompting alternatives to CMOS logic to reduce transistors and low-power design. In this work, a novel energy and area efficient 1-bit GDI-based full swing Energy and Area efficient Full Adder (EAFA) with minimum error distance is proposed. The proposed architecture was constructed to mitigate the cascaded effect problem in GDI-based circuits. It is proved by extending the proposed 1-bit GDI-based adder for different 16-bit Energy and Area Efficient High-Speed Error-Tolerant Adders (EAHSETA) segmented as accurate and inaccurate adder circuits. The proposed adder’s design metrics in terms of delay, area, and power dissipation are verified through simulation using the Cadence tool. The proposed logic is deployed to accelerate the convolution process in the Low-Weight Digit Detector neural network for real-time handwritten digit classification application as a case study in the Intel Cyclone IV Field Programmable Gate Array (FPGA). The results confirm that our proposed EAHSETA occupies fewer logic elements and improves operation speed with the speed-up factor of 1.29 than other similar techniques while producing 95% of classification accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI