已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Edge-Enabled Two-Stage Scheduling Based on Deep Reinforcement Learning for Internet of Everything

计算机科学 云计算 边缘计算 分布式计算 调度(生产过程) 作业车间调度 强化学习 互联网 大数据 加密 GSM演进的增强数据速率 执行人 计算机网络 人工智能 数据挖掘 操作系统 数学优化 布线(电子设计自动化) 法学 数学 政治学
作者
Xiaokang Zhou,Wei Liang,Ke Yan,Weimin Li,Kevin I‐Kai Wang,Jianhua Ma,Qun Jin
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (4): 3295-3304 被引量:88
标识
DOI:10.1109/jiot.2022.3179231
摘要

Nowadays, the concept of Internet of Everything (IoE) is becoming a hotly discussed topic, which is playing an increasingly indispensable role in modern intelligent applications. These applications are known for their real-time requirements under limited network and computing resources, thus it becomes a highly demanding task to transform and compute tremendous amount of raw data in a cloud center. The edge–cloud computing infrastructure allows a large amount of data to be processed on nearby edge nodes and then only the extracted and encrypted key features are transmitted to the data center. This offers the potential to achieve an end–edge–cloud-based big data intelligence for IoE in a typical two-stage data processing scheme, while satisfying a data security constraint. In this study, a deep-reinforcement-learning-enhanced two-stage scheduling (DRL-TSS) model is proposed to address the NP-hard problem in terms of operation complexity in end–edge–cloud Internet of Things systems, which is able to allocate computing resources within an edge-enabled infrastructure to ensure computing task to be completed with minimum cost. A presorting scheme based on Johnson’s rule is developed and applied to preprocess the two-stage tasks on multiple executors, and a DRL mechanism is developed to minimize the overall makespan based on a newly designed instant reward that takes into account the maximal utilization of each executor in edge-enabled two-stage scheduling. The performance of our method is evaluated and compared with three existing scheduling techniques, and experimental results demonstrate the ability of our proposed algorithm in achieving better learning efficiency and scheduling performance with a 1.1-approximation to the targeted optimal IoE applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
1秒前
lubaohong完成签到,获得积分20
1秒前
权以云完成签到,获得积分10
3秒前
优美翠丝发布了新的文献求助10
5秒前
6秒前
7秒前
SciGPT应助ceeray23采纳,获得20
9秒前
11秒前
淡定自中发布了新的文献求助10
11秒前
晁子枫完成签到 ,获得积分10
12秒前
归尘应助Alex采纳,获得200
13秒前
桐桐应助不知终日梦为鱼采纳,获得10
14秒前
旺仔完成签到,获得积分10
14秒前
16秒前
火山蜗牛完成签到,获得积分10
19秒前
20秒前
Spice完成签到 ,获得积分10
21秒前
21秒前
义气的水蓝完成签到 ,获得积分20
22秒前
25秒前
裴裴发布了新的文献求助10
26秒前
29秒前
心随以动完成签到 ,获得积分10
31秒前
31秒前
31秒前
优美翠丝完成签到,获得积分20
34秒前
Panda完成签到 ,获得积分10
35秒前
36秒前
12关闭了12文献求助
38秒前
39秒前
修辛完成签到 ,获得积分10
41秒前
li完成签到 ,获得积分10
42秒前
潇洒洙发布了新的文献求助10
42秒前
甜美的秋尽完成签到,获得积分10
43秒前
万能图书馆应助慕鳞采纳,获得10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476197
求助须知:如何正确求助?哪些是违规求助? 4577817
关于积分的说明 14362993
捐赠科研通 4505761
什么是DOI,文献DOI怎么找? 2468812
邀请新用户注册赠送积分活动 1456457
关于科研通互助平台的介绍 1430101