Multi-Bolt looseness detection using a new acoustic emission strategy

声发射 分类器(UML) Softmax函数 模式识别(心理学) 计算机科学 人工智能 二元分类 工程类 结构工程 支持向量机 声学 人工神经网络 物理
作者
Furui Wang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:22 (3): 1543-1553 被引量:18
标识
DOI:10.1177/14759217221110589
摘要

In mechanical and aerospace engineering, different components are usually integrated together via bolted connections. Compared to the rivet joint and welding joint, the bolted connection is preferred in some cases due to its easy-to-operation and low-cost. However, the bolt self-loosening caused by vibration or other issues (e.g., improper installation and chemical corrosion) may induce severe accidents. Therefore, in this paper, the author proposes a new strategy based on the acoustic emission (AE) technique to detect bolt looseness. To the best of the author’s knowledge, this research is the first attempt to identify multi-bolt looseness via the AE-based method. Particularly, the main contribution is that the author proposes a new shapelet-enhanced AE method that employs a newly developed dual-shapelet networks classifier to discriminate AE waves. The dual-shapelet networks classifier consists of sample-specific shapelets, which is sensitive to the difference among various categories, and category-specific shapelets derived from auxiliary binary classifiers. The objective of category-specific shapelets is to address the imbalanced classification task, that is, discriminating minority categories. Then, the sample-specific shapelets and category-specific shapelets are combined to extract features from AE signals under different multi-bolt looseness cases, and the final classification is achieved by feeding the extracted features into a softmax layer. Finally, the author conducts an experiment to verify the effectiveness of the proposed method. Moreover, by comparing the proposed method’s performance with two baselines, the advantages of the shapelet-enhanced AE method can be demonstrated. Overall, this research demonstrates that the AE technique is valid to characterize friction and collision between asperities on the bolted interface, thus providing a new direction for multi-bolt looseness detection, and the proposed shapelet-enhanced AE method has substantial potential in the field of structural health monitoring (SHM).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SQDHZJ发布了新的文献求助10
刚刚
1秒前
1秒前
富贵李发布了新的文献求助10
2秒前
2秒前
科研通AI6应助2992i采纳,获得10
3秒前
wanci应助秀丽半山采纳,获得10
3秒前
可爱的函函应助aaashirz_采纳,获得10
4秒前
Edwin完成签到 ,获得积分10
4秒前
华仔应助木子剑光军采纳,获得10
5秒前
SQDHZJ完成签到,获得积分10
6秒前
7秒前
柳贯一应助fufu采纳,获得10
8秒前
榴下晨光完成签到 ,获得积分10
8秒前
null应助跳跃的翼采纳,获得10
8秒前
传奇3应助pinecone采纳,获得10
8秒前
9秒前
李爱国应助欧班长采纳,获得10
10秒前
11秒前
LLRO完成签到,获得积分10
11秒前
aaashirz_完成签到,获得积分10
12秒前
14秒前
FG驳回了小二郎应助
14秒前
15秒前
阿强发布了新的文献求助10
16秒前
16秒前
Jack0624完成签到 ,获得积分10
16秒前
852应助亲亲亲采纳,获得10
16秒前
无花果应助Abheben采纳,获得10
17秒前
852应助nano采纳,获得10
17秒前
18秒前
18秒前
zongrending完成签到,获得积分10
18秒前
19秒前
20秒前
aero完成签到 ,获得积分10
21秒前
Kirito完成签到,获得积分0
21秒前
边牧小C发布了新的文献求助10
22秒前
25秒前
楚楚完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4480753
求助须知:如何正确求助?哪些是违规求助? 3937538
关于积分的说明 12215390
捐赠科研通 3592539
什么是DOI,文献DOI怎么找? 1975689
邀请新用户注册赠送积分活动 1012835
科研通“疑难数据库(出版商)”最低求助积分说明 906039