Computer Vision Based Deep Learning Approach for the Detection and Classification of Algae Species Using Microscopic Images

藻类 水华 卷积神经网络 人工智能 深度学习 计算机科学 目标检测 环境科学 模式识别(心理学) 机器学习 生态学 生物 浮游植物 营养物
作者
Abdullah,Sikandar Ali,Ziaullah Khan,Ali Hussain,Ali Athar,Hee‐Cheol Kim
出处
期刊:Water [Multidisciplinary Digital Publishing Institute]
卷期号:14 (14): 2219-2219 被引量:38
标识
DOI:10.3390/w14142219
摘要

The natural phenomenon of harmful algae bloom (HAB) has a bad impact on the quality of pure and freshwater. It increases the risk to human health, water bodies and overall aquatic ecosystem. It is necessary to continuously monitor and perform proper action against HAB. The inspection of algae blooms by using conventional methods, like algae detection under microscopes, is a difficult, expensive, and time-consuming task, however, computer vision-based deep learning models play a vital role in identifying and detecting harmful algae growth in aquatic ecosystems and water reservoirs. Many studies have been conducted to address harmful algae growth by using a CNN based model, however, the YOLO model is considered more accurate in identifying the algae. This advanced deep learning method is extensively used to detect algae and classify them according to their corresponding category. In this study, we used various versions of the convolution neural network (CNN) based on the You Only Look Once (YOLO) model. Recently YOLOv5 has been getting more attention due to its performance in real-time object detection. We performed a series of experiments on our custom microscopic images dataset by using YOLOv3, YOLOv4, and YOLOv5 to detect and classify the harmful algae bloom (HAB) of four classes. We used pre-processing techniques to enhance the quantity of data. The mean average precision (mAP) of YOLOv3, YOLOv4, and YOLO v5 is 75.3%, 83.0%, and 91.0% respectively. For the monitoring of algae bloom in freshwater, computer-aided based systems are very helpful and effective. To the best of our knowledge, this work is pioneering in the AI community for applying the YOLO models to detect algae and classify from microscopic images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
和光同尘完成签到,获得积分10
3秒前
3秒前
牛肉面完成签到 ,获得积分10
5秒前
6秒前
刘月光完成签到,获得积分10
6秒前
6秒前
7秒前
研友_LX7Qg8发布了新的文献求助10
8秒前
cc完成签到,获得积分10
8秒前
Fang完成签到 ,获得积分10
8秒前
pluto应助任我行采纳,获得10
8秒前
可爱的函函应助大蛋采纳,获得10
8秒前
刘华强发布了新的文献求助10
9秒前
9秒前
10秒前
柳叶发布了新的文献求助10
12秒前
卡图兰完成签到,获得积分10
13秒前
烟花应助数星星采纳,获得10
14秒前
忧郁小刺猬完成签到,获得积分10
14秒前
lili发布了新的文献求助10
14秒前
哈基米德应助wang采纳,获得20
16秒前
zx发布了新的文献求助200
16秒前
浮星凡羽完成签到,获得积分10
16秒前
呜呼发布了新的文献求助10
17秒前
猴猴完成签到,获得积分10
17秒前
怕孤独的鹭洋完成签到,获得积分10
18秒前
白茶完成签到,获得积分10
19秒前
19秒前
popvich应助成就的皮皮虾采纳,获得10
20秒前
20秒前
20秒前
glacial完成签到,获得积分20
22秒前
艺阳发布了新的文献求助10
22秒前
23秒前
听海余温发布了新的文献求助10
23秒前
潘道士完成签到 ,获得积分10
23秒前
721完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5181693
求助须知:如何正确求助?哪些是违规求助? 4368600
关于积分的说明 13603680
捐赠科研通 4219863
什么是DOI,文献DOI怎么找? 2314259
邀请新用户注册赠送积分活动 1313000
关于科研通互助平台的介绍 1261716