Computer Vision Based Deep Learning Approach for the Detection and Classification of Algae Species Using Microscopic Images

藻类 水华 卷积神经网络 人工智能 深度学习 计算机科学 目标检测 环境科学 模式识别(心理学) 机器学习 生态学 生物 浮游植物 营养物
作者
Abdullah,Sikandar Ali,Ziaullah Khan,Ali Hussain,Ali Athar,Hee‐Cheol Kim
出处
期刊:Water [Multidisciplinary Digital Publishing Institute]
卷期号:14 (14): 2219-2219 被引量:38
标识
DOI:10.3390/w14142219
摘要

The natural phenomenon of harmful algae bloom (HAB) has a bad impact on the quality of pure and freshwater. It increases the risk to human health, water bodies and overall aquatic ecosystem. It is necessary to continuously monitor and perform proper action against HAB. The inspection of algae blooms by using conventional methods, like algae detection under microscopes, is a difficult, expensive, and time-consuming task, however, computer vision-based deep learning models play a vital role in identifying and detecting harmful algae growth in aquatic ecosystems and water reservoirs. Many studies have been conducted to address harmful algae growth by using a CNN based model, however, the YOLO model is considered more accurate in identifying the algae. This advanced deep learning method is extensively used to detect algae and classify them according to their corresponding category. In this study, we used various versions of the convolution neural network (CNN) based on the You Only Look Once (YOLO) model. Recently YOLOv5 has been getting more attention due to its performance in real-time object detection. We performed a series of experiments on our custom microscopic images dataset by using YOLOv3, YOLOv4, and YOLOv5 to detect and classify the harmful algae bloom (HAB) of four classes. We used pre-processing techniques to enhance the quantity of data. The mean average precision (mAP) of YOLOv3, YOLOv4, and YOLO v5 is 75.3%, 83.0%, and 91.0% respectively. For the monitoring of algae bloom in freshwater, computer-aided based systems are very helpful and effective. To the best of our knowledge, this work is pioneering in the AI community for applying the YOLO models to detect algae and classify from microscopic images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
柿安驳回了孙燕应助
1秒前
3秒前
小唐发布了新的文献求助100
4秒前
无花果应助lelele采纳,获得10
7秒前
7秒前
达达完成签到,获得积分10
8秒前
英姑应助来都来了采纳,获得10
9秒前
9秒前
9秒前
阿紫吖完成签到,获得积分10
10秒前
inRe发布了新的文献求助10
11秒前
12秒前
怕孤单的破茧完成签到,获得积分10
12秒前
心灵美的皮皮虾完成签到,获得积分10
13秒前
13秒前
科目三应助肖肖采纳,获得10
14秒前
14秒前
三三发布了新的文献求助10
15秒前
15秒前
MOMO发布了新的文献求助10
16秒前
ll发布了新的文献求助10
16秒前
17秒前
inRe完成签到,获得积分10
17秒前
17秒前
祁瓀完成签到,获得积分10
18秒前
19秒前
100发布了新的文献求助10
20秒前
21秒前
所所应助年轻的咖啡豆采纳,获得10
22秒前
科研修沟发布了新的文献求助10
22秒前
帅马发布了新的文献求助50
22秒前
22秒前
科研通AI5应助祁瓀采纳,获得10
22秒前
23秒前
凉年发布了新的文献求助30
23秒前
hj456完成签到,获得积分10
23秒前
24秒前
UJS_2022完成签到,获得积分10
24秒前
wwwteng呀完成签到,获得积分10
24秒前
高分求助中
Many-electron theory of superexchange 1000
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Werkstoffe und Bauweisen in der Fahrzeugtechnik 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833008
求助须知:如何正确求助?哪些是违规求助? 3375402
关于积分的说明 10488891
捐赠科研通 3095006
什么是DOI,文献DOI怎么找? 1704175
邀请新用户注册赠送积分活动 819834
科研通“疑难数据库(出版商)”最低求助积分说明 771661