David Oliver: Covid-19 and the Dunning-Kruger effect

计算机科学 人工智能 推论 计算神经科学 人工神经网络 水准点(测量) 机器学习 生成模型 理论计算机科学 生成语法 大地测量学 地理
作者
David Oliver
标识
DOI:10.1136/bmj.o1701
摘要

1

Abstract

A cornerstone of theoretical neuroscience is the circuit model: a system of equations that captures a hypothesized neural mechanism. Such models are valuable when they give rise to an experimentally observed phenomenon – whether behavioral or in terms of neural activity – and thus can offer insights into neural computation. The operation of these circuits, like all models, critically depends on the choices of model parameters. Historically, the gold standard has been to analytically derive the relationship between model parameters and computational properties. However, this enterprise quickly becomes infeasible as biologically realistic constraints are included into the model increasing its complexity, often resulting in ad hoc approaches to understanding the relationship between model and computation. We bring recent machine learning techniques – the use of deep generative models for probabilistic inference – to bear on this problem, learning distributions of parameters that produce the specified properties of computation. Importantly, the techniques we introduce offer a principled means to understand the implications of model parameter choices on computational properties of interest. We motivate this methodology with a worked example analyzing sensitivity in the stomatogastric ganglion. We then use it to go beyond linear theory of neuron-type input-responsivity in a model of primary visual cortex, gain a mechanistic understanding of rapid task switching in superior colliculus models, and attribute error to connectivity properties in recurrent neural networks solving a simple mathematical task. More generally, this work suggests a departure from realism vs tractability considerations, towards the use of modern machine learning for sophisticated interrogation of biologically relevant models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瑾钰满糖完成签到,获得积分10
刚刚
刚刚
hd完成签到,获得积分10
1秒前
可可完成签到 ,获得积分10
1秒前
Ethan完成签到,获得积分10
3秒前
xiaolan完成签到,获得积分10
3秒前
蔡从安完成签到,获得积分20
3秒前
FORREST1993发布了新的文献求助10
4秒前
领导范儿应助有丶神采纳,获得10
5秒前
神途完成签到,获得积分10
5秒前
小赖不赖给小赖不赖的求助进行了留言
8秒前
11秒前
爆米花应助haoduoyu采纳,获得10
11秒前
Ferry完成签到 ,获得积分10
11秒前
11秒前
12秒前
13秒前
珍珠奶茶完成签到,获得积分10
14秒前
啊啊啊啊啊啊完成签到,获得积分10
14秒前
有丶神发布了新的文献求助10
14秒前
15秒前
HalfGumps完成签到,获得积分10
17秒前
hou1995发布了新的文献求助10
17秒前
moya发布了新的文献求助10
18秒前
Ann完成签到,获得积分10
18秒前
慕若涵冰完成签到,获得积分10
19秒前
寒冷的平露完成签到,获得积分20
19秒前
19秒前
紫色系发布了新的文献求助10
20秒前
骆白容发布了新的文献求助10
20秒前
zhhl2006完成签到,获得积分10
23秒前
肥鹏完成签到,获得积分10
23秒前
Li发布了新的文献求助10
24秒前
ypzhu完成签到,获得积分10
26秒前
26秒前
华仔应助他和她的猫采纳,获得10
26秒前
moya完成签到,获得积分10
27秒前
27秒前
有丶神完成签到,获得积分10
27秒前
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785875
求助须知:如何正确求助?哪些是违规求助? 3331224
关于积分的说明 10250683
捐赠科研通 3046706
什么是DOI,文献DOI怎么找? 1672190
邀请新用户注册赠送积分活动 801055
科研通“疑难数据库(出版商)”最低求助积分说明 759979