A dimensionally augmented and physics-informed machine learning for quality prediction of additively manufactured high-entropy alloy

选择性激光熔化 维数之咒 选择性激光烧结 机器学习 表面粗糙度 计算机科学 过程(计算) 熵(时间箭头) 人工智能 一般化 算法 材料科学 数学 数学分析 微观结构 物理 量子力学 冶金 复合材料 烧结 操作系统
作者
Haijie Wang,Bo Li,Fu‐Zhen Xuan
出处
期刊:Journal of Materials Processing Technology [Elsevier BV]
卷期号:307: 117637-117637 被引量:33
标识
DOI:10.1016/j.jmatprotec.2022.117637
摘要

Selective laser melting (SLM) additive manufacturing (AM) is widely used due to its significant advantages in designing and manufacturing special-shaped complex components. The process parameters of SLM determine the quality of as-built parts, but it is difficult to establish an accurate and reliable mathematical model to connect process parameters with the quality of as-built parts. However, data-driven machine learning can effectively solve the analysis and prediction problem of complex process. Therefore, a machine learning (ML) prediction method based on dimensionality augmentation and physical information is proposed, which connects the process parameters (laser power, hatching space, scanning speed, and layer thickness) of SLM with the quality characteristics (top layer surface roughness and relative density) of as-built parts. The four process parameter features (4-dimensional features) are expanded to high-dimensional features through feature engineering to characterize the quality of as-built parts. In addition, the physical information of powder melting forming in SLM process is fused with ML algorithm, the theory-guided ML is used to improve the prediction accuracy of the model. In this paper, the CoCrFeNiMn high-entropy alloy as-built samples dataset is used for network training of four ML algorithms, and three assessment indexes are used to evaluate the prediction model. The results show that dimensionally augmented and physics-informed ML model has better prediction accuracy and generalization ability. The proposed method can also provide guidance for optimizing process parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研完成签到,获得积分20
1秒前
Yola完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
光亮静槐完成签到 ,获得积分10
4秒前
4秒前
6秒前
7秒前
zjq发布了新的文献求助10
8秒前
8秒前
noss发布了新的文献求助10
8秒前
公冶愚志完成签到,获得积分10
9秒前
9秒前
研友_08oa3n完成签到 ,获得积分10
9秒前
潇湘夜雨发布了新的文献求助30
9秒前
9秒前
zhiqing发布了新的文献求助10
10秒前
深情安青应助楚子航采纳,获得10
10秒前
10秒前
深情安青应助伯云采纳,获得10
12秒前
北风应助坦率的寻双采纳,获得10
13秒前
英俊的铭应助无心的土豆采纳,获得10
13秒前
赘婿应助ZhaoY采纳,获得10
14秒前
从容的鲜花完成签到,获得积分20
14秒前
jenningseastera应助zxxx采纳,获得10
14秒前
11哥应助zxxx采纳,获得10
14秒前
jenningseastera应助zxxx采纳,获得10
14秒前
11哥应助zjq采纳,获得10
14秒前
微卫星不稳定完成签到 ,获得积分10
15秒前
15秒前
15秒前
果果完成签到,获得积分20
15秒前
16秒前
paixingxing关注了科研通微信公众号
19秒前
19秒前
21秒前
Z小姐发布了新的文献求助10
21秒前
yuanyu发布了新的文献求助10
21秒前
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784148
求助须知:如何正确求助?哪些是违规求助? 3329279
关于积分的说明 10241157
捐赠科研通 3044752
什么是DOI,文献DOI怎么找? 1671305
邀请新用户注册赠送积分活动 800215
科研通“疑难数据库(出版商)”最低求助积分说明 759268