亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Letter to the Editor: An ultra-sensitive assay using cell-free DNA fragmentomics for multi-cancer early detection

队列 结直肠癌 癌症 阶段(地层学) 内科学 肿瘤科 腺癌 肺癌 医学 生物 古生物学
作者
Hua Bao,Zheng Wang,Xiaolong Ma,Wei Guo,Xiangyu Zhang,Wanxiangfu Tang,Xin Chen,Xinyu Wang,Yikuan Chen,Shaobo Mo,Ning Liang,Qianli Ma,Shu-Yu Wu,Xiuxiu Xu,Shuang Chang,Yu-Lin Wei,Xian Zhang,Hairong Bao,Rui Li,Shanshan Yang,Ya Jiang,Xue Wu,Yaqi Li,Long Zhang,Fengwei Tan,Qi Xue,Fangqi Liu,Sanjun Cai,Shugeng Gao,Junjie Peng,Jian Zhou,Yang Shao
出处
期刊:Molecular Cancer [BioMed Central]
卷期号:21 (1) 被引量:15
标识
DOI:10.1186/s12943-022-01594-w
摘要

Early detection can benefit cancer patients with more effective treatments and better prognosis, but existing early screening tests are limited, especially for multi-cancer detection. This study investigated the most prevalent and lethal cancer types, including primary liver cancer (PLC), colorectal adenocarcinoma (CRC), and lung adenocarcinoma (LUAD). Leveraging the emerging cell-free DNA (cfDNA) fragmentomics, we developed a robust machine learning model for multi-cancer early detection. 1,214 participants, including 381 PLC, 298 CRC, 292 LUAD patients, and 243 healthy volunteers, were enrolled. The majority of patients (N = 971) were at early stages (stage 0, N = 34; stage I, N = 799). The participants were randomly divided into a training cohort and a test cohort in a 1:1 ratio while maintaining the ratio for the major histology subtypes. An ensemble stacked machine learning approach was developed using multiple plasma cfDNA fragmentomic features. The model was trained solely in the training cohort and then evaluated in the test cohort. Our model showed an Area Under the Curve (AUC) of 0.983 for differentiating cancer patients from healthy individuals. At 95.0% specificity, the sensitivity of detecting all cancer reached 95.5%, while 100%, 94.6%, and 90.4% for PLC, CRC, and LUAD, individually. The cancer origin model demonstrated an overall 93.1% accuracy for predicting cancer origin in the test cohort (97.4%, 94.3%, and 85.6% for PLC, CRC, and LUAD, respectively). Our model sensitivity is consistently high for early-stage and small-size tumors. Furthermore, its detection and origin classification power remained superior when reducing sequencing depth to 1× (cancer detection: ≥ 91.5% sensitivity at 95.0% specificity; cancer origin: ≥ 91.6% accuracy). In conclusion, we have incorporated plasma cfDNA fragmentomics into the ensemble stacked model and established an ultrasensitive assay for multi-cancer early detection, shedding light on developing cancer early screening in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
尚焱宇发布了新的文献求助10
13秒前
充电宝应助傲娇泥猴桃采纳,获得10
23秒前
zxcvvbb1001完成签到 ,获得积分10
24秒前
傲娇泥猴桃完成签到,获得积分10
30秒前
34秒前
Criminology34应助淡水痕采纳,获得10
36秒前
37秒前
华仔应助科研通管家采纳,获得10
37秒前
38秒前
果小美G发布了新的文献求助10
40秒前
40秒前
Eileen发布了新的文献求助10
40秒前
优秀不愁发布了新的文献求助10
41秒前
42秒前
44秒前
Xiaoqiang发布了新的文献求助10
44秒前
46秒前
Xiaoqiang完成签到,获得积分10
58秒前
果小美G完成签到,获得积分20
59秒前
陈俐俐完成签到,获得积分10
59秒前
冷艳的晓凡完成签到,获得积分10
1分钟前
华仔应助lalalatiancai采纳,获得10
1分钟前
爱听歌迎夏完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
优秀不愁发布了新的文献求助10
1分钟前
1分钟前
lalalatiancai发布了新的文献求助10
1分钟前
lalalatiancai完成签到,获得积分10
1分钟前
1分钟前
深情安青应助啦啦旋采纳,获得10
1分钟前
aaa发布了新的文献求助10
1分钟前
1分钟前
啦啦旋发布了新的文献求助10
1分钟前
坚强的秋白完成签到,获得积分10
2分钟前
aaa完成签到,获得积分10
2分钟前
微笑笑萍完成签到,获得积分10
2分钟前
严冰蝶完成签到 ,获得积分10
2分钟前
俊逸翠柏完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
RF and Microwave Power Amplifiers 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5019031
求助须知:如何正确求助?哪些是违规求助? 4258091
关于积分的说明 13270659
捐赠科研通 4062878
什么是DOI,文献DOI怎么找? 2222292
邀请新用户注册赠送积分活动 1231309
关于科研通互助平台的介绍 1154301