Vegetation Evolution: An Optimization Algorithm Inspired by the Life Cycle of Plants

计算机科学 差异进化 水准点(测量) 趋同(经济学) 粒子群优化 数学优化 进化计算 算法 计算 机器学习 数学 大地测量学 经济增长 经济 地理
作者
Jun Yu
出处
期刊:International Journal of Computational Intelligence and Applications [Imperial College Press]
卷期号:21 (02) 被引量:13
标识
DOI:10.1142/s1469026822500109
摘要

In this paper, we have observed that different types of plants in nature can use their own survival mechanisms to adapt to various living environments. A new population-based vegetation evolution (VEGE) algorithm is proposed to solve optimization problems by interactively simulating the growth and maturity periods of plants. In the growth period, individuals explore their local areas and grow in potential directions, while individuals generate many seed individuals and spread them as widely as possible in the maturity period. The main contribution of our proposed VEGE is to balance exploitation and exploration from a novel perspective, which is to perform these two periods in alternation to switch between two different search capabilities. To evaluate the performance of the proposed VEGE, we compare it with three well-known algorithms in the evolutionary computation community: differential evolution, particle swarm optimization, and enhanced fireworks algorithm — and run them on 28 benchmark functions with 2-dimensions (2D), 10D, and 30D with 30 trial runs. The experimental results show that VEGE is efficient and promising in terms of faster convergence speed and higher accuracy. In addition, we further analyze the effects of the composition of VEGE on performance, and some open topics are also given.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leo完成签到 ,获得积分10
1秒前
科研通AI2S应助南瓜气气采纳,获得10
1秒前
1秒前
6秒前
醉熏的荣轩完成签到,获得积分10
8秒前
wise111发布了新的文献求助10
8秒前
加菲丰丰举报求助违规成功
9秒前
YOYOYO举报求助违规成功
9秒前
kingwill举报求助违规成功
9秒前
9秒前
钟D摆完成签到 ,获得积分10
9秒前
英姑应助安详的沛菡采纳,获得10
9秒前
我服有点黑完成签到,获得积分10
10秒前
爱听歌契发布了新的文献求助10
10秒前
ddaa发布了新的文献求助10
11秒前
小马甲应助galaxy采纳,获得10
13秒前
13秒前
13秒前
大模型应助科研通管家采纳,获得10
14秒前
彭于晏应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
VDC应助科研通管家采纳,获得30
14秒前
王讯完成签到,获得积分10
14秒前
14秒前
ding应助qiulong采纳,获得10
15秒前
非也非也6完成签到,获得积分10
16秒前
ycccccc完成签到 ,获得积分10
16秒前
安详的沛菡完成签到,获得积分10
17秒前
热心易绿完成签到 ,获得积分10
17秒前
梅川秋裤完成签到,获得积分10
17秒前
加菲丰丰举报求助违规成功
18秒前
kingwill举报求助违规成功
18秒前
故意的松思举报求助违规成功
18秒前
18秒前
ddaa完成签到,获得积分10
18秒前
2022H发布了新的文献求助20
19秒前
黄石发布了新的文献求助10
19秒前
拉拉发布了新的文献求助10
19秒前
19秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799219
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322248
捐赠科研通 3061362
什么是DOI,文献DOI怎么找? 1680250
邀请新用户注册赠送积分活动 806929
科研通“疑难数据库(出版商)”最低求助积分说明 763451