Deep Learning Reconstruction Shows Better Lung Nodule Detection for Ultra-Low-Dose Chest CT.

医学 结核(地质) 放射科 深度学习 肺孤立结节 人工智能 肺癌 断层摄影术 计算机断层摄影术 核医学 肺癌筛查
作者
Beibei Jiang,Nianyun Li,Xiaomeng Shi,Shuai Zhang,Jianying Li,Geertruida H. de Bock,Rozemarijn Vliegenthart,Xueqian Xie
出处
期刊:Radiology [Radiological Society of North America]
卷期号:: 210551-210551
标识
DOI:10.1148/radiol.210551
摘要

Background Ultra-low-dose (ULD) CT could facilitate the clinical implementation of large-scale lung cancer screening while minimizing the radiation dose. However, traditional image reconstruction methods are associated with image noise in low-dose acquisitions. Purpose To compare the image quality and lung nodule detectability of deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction-V (ASIR-V) in ULD CT. Materials and Methods Patients who underwent noncontrast ULD CT (performed at 0.07 or 0.14 mSv, similar to a single chest radiograph) and contrast-enhanced chest CT (CECT) from April to June 2020 were included in this prospective study. ULD CT images were reconstructed with filtered back projection (FBP), ASIR-V, and DLIR. Three-dimensional segmentation of lung tissue was performed to evaluate image noise. Radiologists detected and measured nodules with use of a deep learning-based nodule assessment system and recognized malignancy-related imaging features. Bland-Altman analysis and repeated-measures analysis of variance were used to evaluate the differences between ULD CT images and CECT images. Results A total of 203 participants (mean age ± standard deviation, 61 years ± 12; 129 men) with 1066 nodules were included, with 100 scans at 0.07 mSv and 103 scans at 0.14 mSv. The mean lung tissue noise ± standard deviation was 46 HU ± 4 for CECT and 59 HU ± 4, 56 HU ± 4, 53 HU ± 4, 54 HU ± 4, and 51 HU ± 4 in FBP, ASIR-V level 40%, ASIR-V level 80% (ASIR-V-80%), medium-strength DLIR, and high-strength DLIR (DLIR-H), respectively, of ULD CT scans (P < .001). The nodule detection rates of FBP reconstruction, ASIR-V-80%, and DLIR-H were 62.5% (666 of 1066 nodules), 73.3% (781 of 1066 nodules), and 75.8% (808 of 1066 nodules), respectively (P < .001). Bland-Altman analysis showed the percentage difference in long diameter from that of CECT was 9.3% (95% CI of the mean: 8.0, 10.6), 9.2% (95% CI of the mean: 8.0, 10.4), and 6.2% (95% CI of the mean: 5.0, 7.4) in FBP reconstruction, ASIR-V-80%, and DLIR-H, respectively (P < .001). Conclusion Compared with adaptive statistical iterative reconstruction-V, deep learning image reconstruction reduced image noise, increased nodule detection rate, and improved measurement accuracy on ultra-low-dose chest CT images. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Lee in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
元谷雪发布了新的文献求助30
1秒前
糊涂完成签到,获得积分10
1秒前
SciGPT应助塔菲尔采纳,获得10
2秒前
231231321321完成签到,获得积分20
2秒前
foyefeng发布了新的文献求助30
2秒前
jiangjiang完成签到,获得积分10
2秒前
3秒前
3秒前
lllv发布了新的文献求助10
4秒前
陈pc完成签到,获得积分10
5秒前
5秒前
丘比特应助哈哈哈采纳,获得10
7秒前
8秒前
科研通AI5应助山川无恙采纳,获得10
8秒前
康利萍完成签到,获得积分20
8秒前
吉半雪发布了新的文献求助10
8秒前
月夜孤影完成签到,获得积分10
9秒前
万能图书馆应助花开富贵采纳,获得10
9秒前
10秒前
CodeCraft应助田所浩二采纳,获得10
10秒前
11秒前
清风徐来完成签到,获得积分10
11秒前
123发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
suonik发布了新的文献求助10
13秒前
guozizi发布了新的文献求助10
15秒前
塔菲尔发布了新的文献求助10
16秒前
nozero应助ED采纳,获得200
16秒前
lss发布了新的文献求助10
16秒前
糖醋花孙米完成签到,获得积分10
16秒前
卡卡西应助ivying0209采纳,获得10
17秒前
17秒前
传奇3应助糊涂采纳,获得10
18秒前
bhh完成签到 ,获得积分10
18秒前
xier发布了新的文献求助30
18秒前
执着烧鹅发布了新的文献求助10
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817476
求助须知:如何正确求助?哪些是违规求助? 3360822
关于积分的说明 10409731
捐赠科研通 3078922
什么是DOI,文献DOI怎么找? 1690869
邀请新用户注册赠送积分活动 814197
科研通“疑难数据库(出版商)”最低求助积分说明 768065