纳米技术
材料科学
生物分子
磁性纳米粒子
氧化铁纳米粒子
生物相容性
药物输送
纳米材料
纳米医学
纳米颗粒
磁热疗
量子点
冶金
作者
Hung-Vu Tran,Nhat M. Ngo,Riddhiman Medhi,Pannaree Srinoi,Tingting Liu,Supparesk Rittikulsittichai,T. Randall Lee
出处
期刊:Materials
[Multidisciplinary Digital Publishing Institute]
日期:2022-01-10
卷期号:15 (2): 503-503
被引量:103
摘要
Due to their good magnetic properties, excellent biocompatibility, and low price, magnetic iron oxide nanoparticles (IONPs) are the most commonly used magnetic nanomaterials and have been extensively explored in biomedical applications. Although magnetic IONPs can be used for a variety of applications in biomedicine, most practical applications require IONP-based platforms that can perform several tasks in parallel. Thus, appropriate engineering and integration of magnetic IONPs with different classes of organic and inorganic materials can produce multifunctional nanoplatforms that can perform several functions simultaneously, allowing their application in a broad spectrum of biomedical fields. This review article summarizes the fabrication of current composite nanoplatforms based on integration of magnetic IONPs with organic dyes, biomolecules (e.g., lipids, DNAs, aptamers, and antibodies), quantum dots, noble metal NPs, and stimuli-responsive polymers. We also highlight the recent technological advances achieved from such integrated multifunctional platforms and their potential use in biomedical applications, including dual-mode imaging for biomolecule detection, targeted drug delivery, photodynamic therapy, chemotherapy, and magnetic hyperthermia therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI