Machine learning and geometric morphometrics to predict obstructive sleep apnea from 3D craniofacial scans

阻塞性睡眠呼吸暂停 颅面 多导睡眠图 形态计量学 医学 人体测量学 金标准(测试) 接收机工作特性 睡眠呼吸暂停 呼吸暂停 放射科 内科学 生物 精神科 渔业
作者
Fabrice Monna,Raoua Ben Messaoud,Nicolas Navarro,Sébastien Baillieul,Lionel Sanchez,Corinne Loiodice,Renaud Tamisier,Marie Joyeux-Faure,Jean‐Louis Pépin
出处
期刊:Sleep Medicine [Elsevier]
卷期号:95: 76-83 被引量:31
标识
DOI:10.1016/j.sleep.2022.04.019
摘要

Obstructive sleep apnea (OSA) remains massively underdiagnosed, due to limited access to polysomnography (PSG), the highly complex gold standard for diagnosis. Performance scores in predicting OSA are evaluated for machine learning (ML) analysis applied to 3D maxillofacial shapes.The 3D maxillofacial shapes were scanned on 280 Caucasian men with suspected OSA. All participants underwent single night in-home or in-laboratory sleep testing with PSG (Nox A1, Resmed, Australia), with concomitant 3D scanning (Sense v2, 3D systems corporation, USA). Anthropometric data, comorbidities, medication, BERLIN, and NoSAS questionnaires were also collected at baseline. The PSG recordings were manually scored at the reference sleep center. The 3D craniofacial scans were processed by geometric morphometrics, and 13 different supervised algorithms, varying from simple to more advanced, were trained and tested. Results for OSAS recognition by ML models were then compared with scores for specificity and sensitivity obtained using BERLIN and NoSAS questionnaires.All valid scans (n = 267) were included in the analysis (patient mean age: 59 ± 9 years; BMI: 27 ± 4 kg/m2). For PSG-derived AHI≥15 events/h, the 56% specificity obtained for ML analysis of 3D craniofacial shapes was higher than for the questionnaires (Berlin: 50%; NoSAS: 40%). A sensitivity of 80% was obtained using ML analysis, compared to nearly 90% for NoSAS and 61% for the BERLIN questionnaire. The auROC score was further improved when 3D geometric morphometrics were combined with patient anthropometrics (auROC = 0.75).The combination of 3D geometric morphometrics with ML is proposed as a rapid, efficient, and inexpensive screening tool for OSA.NCT03632382; Date of registration: 15-08-2018.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚心依瑶完成签到,获得积分10
刚刚
K丶口袋发布了新的文献求助10
1秒前
1秒前
shinco发布了新的文献求助10
1秒前
TH发布了新的文献求助10
2秒前
bkagyin应助Huang采纳,获得10
2秒前
kingslee发布了新的文献求助10
3秒前
3秒前
3秒前
孙树人发布了新的文献求助10
4秒前
荀荆发布了新的文献求助10
4秒前
4秒前
情怀应助lovo采纳,获得10
4秒前
kento发布了新的文献求助200
4秒前
spc68应助slowstar采纳,获得10
4秒前
最爱吃火锅发布了新的文献求助200
4秒前
Steffi发布了新的文献求助10
4秒前
ghkjl应助姬因采纳,获得10
5秒前
6秒前
Stella应助明明采纳,获得10
6秒前
6秒前
liuzr发布了新的文献求助10
6秒前
7秒前
7秒前
爆米花应助li采纳,获得10
7秒前
李李李发布了新的文献求助10
7秒前
K丶口袋完成签到,获得积分10
8秒前
观自在发布了新的文献求助10
8秒前
8秒前
爰采唐矣完成签到,获得积分10
8秒前
在水一方应助列苑苑采纳,获得10
8秒前
周一完成签到,获得积分10
8秒前
6898完成签到,获得积分20
9秒前
9秒前
小马甲应助开朗千山采纳,获得10
9秒前
上官若男应助孙树人采纳,获得10
9秒前
LZR发布了新的文献求助10
10秒前
kenan完成签到,获得积分10
10秒前
黑胡椒发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608628
求助须知:如何正确求助?哪些是违规求助? 4693398
关于积分的说明 14877890
捐赠科研通 4718180
什么是DOI,文献DOI怎么找? 2544398
邀请新用户注册赠送积分活动 1509479
关于科研通互助平台的介绍 1472844