纳米片
异质结
光催化
材料科学
纳米颗粒
可见光谱
化学工程
纳米技术
光电子学
催化作用
化学
生物化学
工程类
作者
Zhongjie Guan,Peng Wang,Qiuye Li,Guoqiang Li,Jianjun Yang
出处
期刊:Dalton Transactions
[Royal Society of Chemistry]
日期:2018-01-01
卷期号:47 (19): 6800-6807
被引量:49
摘要
A zero-dimensional (0D)/two-dimensional (2D) heterojunction has an excellent advantage of boosting the photo-generated carrier separation and obtaining enhanced photocatalytic activities. Here, a ZnIn2S4 nanoparticle/MoS2-RGO nanosheet 0D/2D heterojunction was prepared by a rapid and low temperature hydrothermal method. TEM characterization results reveal that ZnIn2S4 nanoparticles are uniformly dispersed on the surface of MoS2-RGO nanosheets, which can provide abundant active sites and shorten the charge-migration distance, while the MoS2-RGO nanosheet acts as a support to avoid the aggregation of 0D ZnIn2S4 nanoparticles and also serves as a low-cost cocatalyst for effective hydrogen evolution. Through optimizing the MoS2-RGO composition and content, the highest hydrogen evolution rate of 425.1 μmol g-1 h-1 was obtained over the ZnIn2S4/MoS2-RGO 0D/2D heterojunction photocatalyst under visible light irradiation (λ > 420 nm), which is about 34.6 times higher than that of pure ZnIn2S4. Efficient charge separation can be attributed to the significantly enhanced photocatalytic performance, which originates from the favorable properties of the ZnIn2S4/MoS2-RGO 0D/2D heterojunction. This study provides an effective method to improve the photocatalytic performance of the ZnIn2S4 photocatalyst based on the 0D/2D heterojunction.
科研通智能强力驱动
Strongly Powered by AbleSci AI