亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An MRI-based Radiomics Classifier for Preoperative Prediction of Ki-67 Status in Breast Cancer

无线电技术 乳腺癌 医学 分类器(UML) 放射科 内科学 人工智能 癌症 计算机科学
作者
Cuishan Liang,Zixuan Cheng,Yanqi Huang,Lan He,Xin Chen,Zelan Ma,Xiaomei Huang,Changhong Liang,Zaiyi Liu
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:25 (9): 1111-1117 被引量:87
标识
DOI:10.1016/j.acra.2018.01.006
摘要

Rationale and Objectives This study aims to investigate the value of a magnetic resonance imaging–based radiomics classifier for preoperatively predicting the Ki-67 status in patients with breast cancer. Materials and Methods We chronologically divided 318 patients with clinicopathologically confirmed breast cancer into a training dataset (n = 200) and a validation dataset (n = 118). Radiomics features were extracted from T2-weighted (T2W) and contrast-enhanced T1-weighted (T1+C) images of breast cancer. Radiomics feature selection and radiomics classifiers were generated using the least absolute shrinkage and selection operator regression analysis method. The correlation between the radiomics classifiers and the Ki-67 status in patients with breast cancer was explored. The predictive performances of the radiomics classifiers for the Ki-67 status were evaluated with receiver operating characteristic curves in the training dataset and validated in the validation dataset. Results Through the radiomics feature selection, 16 and 14 features based on T2W and T1+C images, respectively, were selected to constitute the radiomics classifiers. The radiomics classifier based on T2W images was significantly correlated with the Ki-67 status in both the training and the validation datasets (both P < .0001). The radiomics classifier based on T1+C images was significantly correlated with the Ki-67 status in the training dataset (P < .0001) but not in the validation dataset (P = .083). The T2W image–based radiomics classifier exhibited good discrimination for Ki-67 status, with areas under the receiver operating characteristic curves of 0.762 (95% confidence interval: 0.685, 0.838) and 0.740 (95% confidence interval: 0.645, 0.836) in the training and validation datasets, respectively. Conclusions The T2W image–based radiomics classifier was a significant predictor of Ki-67 status in patients with breast cancer. Thus, it may serve as a noninvasive approach to facilitate the preoperative prediction of Ki-67 status in clinical practice. This study aims to investigate the value of a magnetic resonance imaging–based radiomics classifier for preoperatively predicting the Ki-67 status in patients with breast cancer. We chronologically divided 318 patients with clinicopathologically confirmed breast cancer into a training dataset (n = 200) and a validation dataset (n = 118). Radiomics features were extracted from T2-weighted (T2W) and contrast-enhanced T1-weighted (T1+C) images of breast cancer. Radiomics feature selection and radiomics classifiers were generated using the least absolute shrinkage and selection operator regression analysis method. The correlation between the radiomics classifiers and the Ki-67 status in patients with breast cancer was explored. The predictive performances of the radiomics classifiers for the Ki-67 status were evaluated with receiver operating characteristic curves in the training dataset and validated in the validation dataset. Through the radiomics feature selection, 16 and 14 features based on T2W and T1+C images, respectively, were selected to constitute the radiomics classifiers. The radiomics classifier based on T2W images was significantly correlated with the Ki-67 status in both the training and the validation datasets (both P < .0001). The radiomics classifier based on T1+C images was significantly correlated with the Ki-67 status in the training dataset (P < .0001) but not in the validation dataset (P = .083). The T2W image–based radiomics classifier exhibited good discrimination for Ki-67 status, with areas under the receiver operating characteristic curves of 0.762 (95% confidence interval: 0.685, 0.838) and 0.740 (95% confidence interval: 0.645, 0.836) in the training and validation datasets, respectively. The T2W image–based radiomics classifier was a significant predictor of Ki-67 status in patients with breast cancer. Thus, it may serve as a noninvasive approach to facilitate the preoperative prediction of Ki-67 status in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
20秒前
激动的似狮完成签到,获得积分10
20秒前
24秒前
Wcy发布了新的文献求助10
25秒前
XX完成签到,获得积分10
42秒前
Beyond095完成签到 ,获得积分10
45秒前
wanci应助Wcy采纳,获得10
45秒前
所所应助XX采纳,获得10
47秒前
1分钟前
朱佳慧发布了新的文献求助10
1分钟前
2分钟前
无奈的代珊完成签到 ,获得积分10
2分钟前
所所应助朱佳慧采纳,获得10
2分钟前
2分钟前
noss发布了新的文献求助10
2分钟前
3分钟前
3分钟前
NexusExplorer应助来这里了采纳,获得10
3分钟前
kbcbwb2002完成签到,获得积分10
3分钟前
3分钟前
来这里了发布了新的文献求助10
3分钟前
4分钟前
科研通AI5应助FLN采纳,获得10
4分钟前
5分钟前
Wcy发布了新的文献求助10
5分钟前
5分钟前
cuddly完成签到 ,获得积分10
5分钟前
小w发布了新的文献求助10
5分钟前
Wcy完成签到,获得积分10
5分钟前
Ava应助坚定的小海豚采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
yy完成签到,获得积分10
5分钟前
小w发布了新的文献求助10
5分钟前
5分钟前
5分钟前
FLN发布了新的文献求助10
5分钟前
手帕很忙完成签到,获得积分10
6分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780810
求助须知:如何正确求助?哪些是违规求助? 3326338
关于积分的说明 10226598
捐赠科研通 3041516
什么是DOI,文献DOI怎么找? 1669478
邀请新用户注册赠送积分活动 799063
科研通“疑难数据库(出版商)”最低求助积分说明 758732