Morphology Effect of Vertical Graphene on the High Performance of Supercapacitor Electrode

石墨烯 材料科学 超级电容器 电极 水平扫描速率 电容 纳米技术 石墨 比表面积 石墨烯泡沫 光电子学 石墨烯纳米带 复合材料 电化学 循环伏安法 生物化学 化学 物理化学 催化作用
作者
Yu Zhang,Qiushun Zou,Hua Shao Hsu,Supil Raina,Yuxi Xu,Joyce B. Kang,Jun Chen,Shaozhi Deng,Ning Xu,W.P. Kang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:8 (11): 7363-7369 被引量:102
标识
DOI:10.1021/acsami.5b12652
摘要

Graphene and its composites are widely investigated as supercapacitor electrodes due to their large specific surface area. However, the severe aggregation and disordered alignment of graphene sheets hamper the maximum utilization of its surface area. Here we report an optimized structure for supercapacitor electrode, i.e., the vertical graphene sheets, which have a vertical structure and open architecture for ion transport pathway. The effect of morphology and orientation of vertical graphene on the performance of supercapacitor is examined using a combination of model calculation and experimental study. Both results consistently demonstrate that the vertical graphene electrode has a much superior performance than that of lateral graphene electrode. Typically, the areal capacitances of a vertical graphene electrode reach 8.4 mF/cm(2) at scan rate of 100 mV/s; this is about 38% higher than that of a lateral graphene electrode and about 6 times higher than that of graphite paper. To further improve its performance, a MnO2 nanoflake layer is coated on the surface of graphene to provide a high pseudocapacitive contribution to the overall areal capacitance which increases to 500 mF/cm(2) at scan rate of 5 mV/s. The reasons for these significant improvements are studied in detail and are attributed to the fast ion diffusion and enhanced charge storage capacity. The microscopic manipulation of graphene electrode configuration could greatly improve its specific capacitance, and furthermore, boost the energy density of supercapacitor. Our results demonstrate that the vertical graphene electrode is more efficient and practical for the high performance energy storage device with high power and energy densities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
威武画板完成签到 ,获得积分10
刚刚
zhx完成签到,获得积分10
1秒前
香蕉觅云应助112我的采纳,获得10
1秒前
快乐的惜寒完成签到,获得积分20
2秒前
协和_子鱼完成签到,获得积分10
2秒前
雪雨夜心完成签到,获得积分10
3秒前
cuipanda完成签到,获得积分20
3秒前
科目三应助五五我采纳,获得10
4秒前
月亮门儿完成签到 ,获得积分10
4秒前
尘弦完成签到 ,获得积分10
5秒前
彩色亿先完成签到 ,获得积分10
5秒前
5秒前
似风完成签到,获得积分10
6秒前
zsc668完成签到 ,获得积分10
6秒前
昏睡的人完成签到 ,获得积分10
6秒前
海王星完成签到,获得积分10
7秒前
7秒前
慕青应助敬老院N号采纳,获得10
7秒前
st89225完成签到,获得积分10
8秒前
夜白完成签到,获得积分0
8秒前
耍酷的指甲油完成签到,获得积分10
8秒前
万能图书馆应助yangsir采纳,获得10
8秒前
8秒前
jerome完成签到,获得积分10
10秒前
瞿访云完成签到,获得积分10
10秒前
杭紫雪完成签到,获得积分10
10秒前
guo完成签到,获得积分10
10秒前
zyc完成签到,获得积分10
11秒前
一自文又欠完成签到,获得积分10
11秒前
陶一二完成签到,获得积分10
12秒前
12秒前
13秒前
小悟空的美好年华完成签到 ,获得积分10
14秒前
14秒前
柯柯完成签到,获得积分10
14秒前
菠萝汁完成签到,获得积分10
14秒前
生动的小白菜完成签到,获得积分10
14秒前
活泼的煎饼完成签到,获得积分10
15秒前
xu完成签到,获得积分10
15秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808162
求助须知:如何正确求助?哪些是违规求助? 3352864
关于积分的说明 10360735
捐赠科研通 3068866
什么是DOI,文献DOI怎么找? 1685271
邀请新用户注册赠送积分活动 810415
科研通“疑难数据库(出版商)”最低求助积分说明 766130