电弧炉
电极
人工神经网络
控制理论(社会学)
反向
弧(几何)
聚类分析
计算机科学
工程类
材料科学
冶金
人工智能
数学
控制(管理)
化学
机械工程
几何学
物理化学
作者
Zhang Shao-de,Zheng Xiao
标识
DOI:10.1109/ical.2007.4338612
摘要
RBF neural network (RBFN) based on nearest neighbor clustering algorithm is applied for three-phase electrode system in Electrical Arc Furnace(EAF). The double model control scheme of variable structure based on RBFN inverse control and PD control with adaptive parameter is provided. This scheme is applied to EAF electrode system successfully in third iron-steel plant of Ma'anshan P.R. China.
科研通智能强力驱动
Strongly Powered by AbleSci AI