A neural network aid for the early diagnosis of cardiac ischemia in patients presenting to the emergency department with chest pain

医学 胸痛 急诊科 心肌梗塞 缺血 急诊医学 心脏病学 精神科
作者
William G. Baxt,Frances S. Shofer,Frank D. Sites,Judd E. Hollander
出处
期刊:Annals of Emergency Medicine [Elsevier BV]
卷期号:40 (6): 575-583 被引量:101
标识
DOI:10.1067/mem.2002.129171
摘要

Chest pain is the second most common chief complaint presented to the emergency department. Although the causes of chest pain span the clinical spectrum from the trivial to the life threatening, it is often difficult to identify which patients have the most common life-threatening cause, cardiac ischemia. Because of the potential for poor outcome if this diagnosis is missed, physicians have had a low threshold for admitting patients with chest pain to the hospital, the vast majority of whom are found not to have cardiac ischemia. In an earlier study with a large chest pain patient registry, an artificial neural network was shown to be able to identify the subset of patients who present to the ED with chest pain who have sustained acute myocardial infarction. The objective of this study was to use the same registry to determine whether a network could be trained accurately to identify the larger subset of patients who have cardiac ischemia.Two thousand two hundred four adult patients presenting to the ED with chest pain who received an ECG were used to train and test an artificial neural network to recognize the presence of cardiac ischemia. Only the data available at the time of initial patient contact were used to replicate the conditions of real-time evaluation. Forty variables from patient history, physical examination, ECG, and the first set of chemical cardiac marker determinations were used to train and subsequently test the network. The network was trained and tested by using the jackknife variance technique to allow for the network to be trained on as many of the features of the small subset of ischemic patients as possible. Network accuracy was compared with 2 existing aids to the diagnosis of cardiac ischemia, as well as a derived regression model.The network had a sensitivity of 88.1% (95% confidence interval [CI] 84.8% to 91.4%) and a specificity of 86.2% (95% CI 84.6% to 87.7%) for cardiac ischemia despite the fact that a mean of 5% of all required network input data and 41% of cardiac chemical marker data were missing. The network also performed more accurately than the 3 other tested approaches.These data suggest that an artificial neural network might be able to identify which patients who present to the ED with chest pain have cardiac ischemia with useful sensitivities and specificities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kris发布了新的文献求助10
刚刚
归尘应助李兴起采纳,获得10
1秒前
Summeryz920发布了新的文献求助10
3秒前
科研狗完成签到,获得积分10
3秒前
5秒前
苏洛完成签到,获得积分10
6秒前
李辉发布了新的文献求助10
7秒前
清爽鸡翅完成签到 ,获得积分20
7秒前
简单面包完成签到,获得积分10
7秒前
Hello应助Summeryz920采纳,获得10
8秒前
linmu完成签到 ,获得积分10
8秒前
海岢发布了新的文献求助10
9秒前
HK完成签到 ,获得积分10
9秒前
秋天发布了新的文献求助40
10秒前
张小馨完成签到 ,获得积分10
12秒前
华仔应助苏苏苏采纳,获得10
12秒前
火星上的百川完成签到,获得积分10
18秒前
20秒前
Richard发布了新的文献求助10
22秒前
蔡继海完成签到,获得积分10
24秒前
26秒前
我是苯宝宝完成签到,获得积分10
26秒前
Holland应助硕shuo采纳,获得20
26秒前
zzz完成签到 ,获得积分10
30秒前
30秒前
上官若男应助我是苯宝宝采纳,获得10
31秒前
31秒前
zy发布了新的文献求助10
32秒前
火星上友易完成签到,获得积分10
33秒前
积极寄瑶完成签到,获得积分10
35秒前
日出发布了新的文献求助10
35秒前
nv42r8发布了新的文献求助10
37秒前
领导范儿应助日出采纳,获得10
40秒前
41秒前
今后应助zy采纳,获得10
42秒前
Hayat驳回了陈佳应助
44秒前
黑糖珍珠完成签到 ,获得积分10
44秒前
liyijing发布了新的文献求助10
47秒前
50秒前
打打应助木木三采纳,获得10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322186
关于积分的说明 10209239
捐赠科研通 3037436
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757959