Prediction and Analysis of Vitamin D Deficiency Using Machine Learning Algorithms

机器学习 随机森林 人工智能 维生素D与神经学 决策树 计算机科学 算法 医学 内科学
作者
Mohammad Ulfath,R. Pallavi Reddy
出处
期刊:Smart innovation, systems and technologies 卷期号:: 177-185
标识
DOI:10.1007/978-981-16-9669-5_16
摘要

Vitamin D is an important nutrient that has a wide range of effects on the human body. It is more common in those who do not get enough sunlight and do not get enough vitamin D in their diet. Vitamin D deficiency has been linked to a number of auto-immune diseases, including cardiovascular disease, diabetes, and breast cancer. In the current method, only statistical models were employed to estimate the severity of insufficiency in vitamin D datasets. Smaller vitamin datasets are used to test the statistical models. When the methods are applied to larger datasets, there is a risk of performance degradation. The goal of the proposed research is to compare and evaluate various machine learning models for predicting the severity of vitamin D deficiency (VDD). The work focuses on using several machine learning algorithms to make predictions and evaluating the results using various performance measures such as accuracy, mean absolute error, and mean squared error. To predict the severity of VDD, strong machine learning classifiers such as decision tree (DT) and random forest (RF) are used. The main goal is to find the most accurate machine learning classifier for predicting the severity of VDD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gyx关闭了gyx文献求助
2秒前
专注妙海发布了新的文献求助10
2秒前
liysh发布了新的文献求助10
3秒前
4秒前
5秒前
七七完成签到,获得积分10
5秒前
7秒前
7秒前
8秒前
顾矜应助无知小白采纳,获得10
8秒前
陈雷应助Eric800824采纳,获得10
9秒前
mirrovo发布了新的文献求助10
10秒前
黑囡完成签到,获得积分10
11秒前
猪猪发布了新的文献求助20
11秒前
Owen应助一亿采纳,获得10
11秒前
12秒前
14秒前
开心幻巧完成签到,获得积分10
15秒前
崔灿完成签到 ,获得积分10
15秒前
16秒前
细心夏槐完成签到 ,获得积分10
16秒前
大腚疯猪应助wang采纳,获得10
17秒前
昭玥应助罗晨采纳,获得10
17秒前
XCZV发布了新的文献求助30
17秒前
梦丽有人发布了新的文献求助10
18秒前
上官若男应助77采纳,获得10
19秒前
寂寞的安筠完成签到,获得积分10
20秒前
万能图书馆应助pantan采纳,获得10
20秒前
简单的千凝应助鸡致大王采纳,获得20
21秒前
21秒前
haoking发布了新的文献求助10
21秒前
22秒前
24秒前
nczpf2010完成签到,获得积分10
25秒前
陈雷应助Eric800824采纳,获得10
25秒前
WANGYI发布了新的文献求助10
25秒前
CipherSage应助游魂采纳,获得30
26秒前
独特尔丝发布了新的文献求助10
27秒前
28秒前
wang完成签到,获得积分10
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794412
求助须知:如何正确求助?哪些是违规求助? 3339288
关于积分的说明 10295188
捐赠科研通 3055844
什么是DOI,文献DOI怎么找? 1676867
邀请新用户注册赠送积分活动 804820
科研通“疑难数据库(出版商)”最低求助积分说明 762149