Wetting and evaporation of multicomponent droplets

润湿 蒸发 微流控 表面张力 纳米技术 数字微流体 机械 材料科学 化学物理 物理 热力学 复合材料 电润湿 光电子学 电介质
作者
Zhenying Wang,Daniel Orejon,Yasuyuki Takata,Khellil Sefiane
出处
期刊:Physics Reports [Elsevier BV]
卷期号:960: 1-37 被引量:121
标识
DOI:10.1016/j.physrep.2022.02.005
摘要

Wetting and evaporation of sessile droplets are ubiquitous in nature and of importance to many industrial and everyday processes. While most of the research on sessile droplets has been constraint to single component droplets, complex multicomponent droplets are in fact the most common systems in natural and industrial fields. Multicomponent droplets show diverse behaviors as the concentration of the different components varies in both the liquid and the gas phases. The nonuniform distribution of different components leads to surface tension gradient and affects the wetting dynamics. Additionally, some ubiquitous behaviors can be induced by the preferential evaporation of more volatile components, and by actively tuning the vapor field by adjacent droplets or via external vapor sources. In this paper, we review the underlying physical and physicochemical mechanisms of multicomponent droplets during wetting and spreading, induced by evaporation and/or mediated by the vapor field. Especially we focus on volatile multicomponent droplets and exclude the colloidal or nanofluids droplets which have been reviewed in existing papers. We overview the droplet wetting dynamics, the interfacial mass flux, the droplet lifetime and the flow patterns of these complex droplets. The available experimental and numerical methodologies to date are also summarized, including the application conditions, accuracy, resolution and limitations from the experimental aspect; as well as the main assumptions, mathematical methods and corresponding reliability from the numerical aspect. Last we discuss the significance of exploiting the interacting mechanisms with complex droplets, and point out the innovation potentials in cutting-edge applications including 3D printing, self-cleaning, digital microfluidics, cellular sorting and biomedical diagnosis, amongst others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Villanellel发布了新的文献求助10
1秒前
1秒前
易拉罐完成签到,获得积分10
1秒前
1秒前
2秒前
shaw完成签到,获得积分10
2秒前
乐观蚂蚁发布了新的文献求助10
2秒前
lmr发布了新的文献求助20
3秒前
阔达的乌冬面完成签到,获得积分10
3秒前
3秒前
4秒前
寒雨完成签到,获得积分10
4秒前
4秒前
4秒前
好梦完成签到 ,获得积分10
5秒前
阔达代芹完成签到,获得积分10
5秒前
海孩子发布了新的文献求助10
5秒前
5秒前
榛蘑大王完成签到,获得积分10
6秒前
6秒前
哈哈哈哈发布了新的文献求助10
6秒前
俭朴莫言发布了新的文献求助10
7秒前
CCCCPUTA发布了新的文献求助10
7秒前
7秒前
风中的溪流完成签到,获得积分10
7秒前
我是老大应助kangkang采纳,获得10
7秒前
Lucas应助Villanellel采纳,获得10
7秒前
8秒前
Ancy应助江小鱼在查文献采纳,获得10
8秒前
8秒前
8秒前
Yve发布了新的文献求助10
8秒前
11关闭了11文献求助
9秒前
10秒前
10秒前
10秒前
Tan关闭了Tan文献求助
10秒前
C2完成签到,获得积分10
11秒前
仰山雪完成签到 ,获得积分10
11秒前
11秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
植物基因组学(第二版) 1000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4095012
求助须知:如何正确求助?哪些是违规求助? 3633257
关于积分的说明 11516365
捐赠科研通 3343935
什么是DOI,文献DOI怎么找? 1837867
邀请新用户注册赠送积分活动 905408
科研通“疑难数据库(出版商)”最低求助积分说明 823160