Multi-target CNN-LSTM regressor for predicting urban distribution of short-term food delivery demand

背景(考古学) 计算机科学 需求预测 食物运送 服务(商务) 期限(时间) 激励 需求模式 钥匙(锁) 运筹学 推论 人工智能 业务 营销 计算机安全 需求管理 地理 经济 微观经济学 工程类 考古 量子力学 宏观经济学 物理
作者
Alessandro Crivellari,Euro Beinat,Sandor Caetano,Arnaud Seydoux,Thiago N. Cardoso
出处
期刊:Journal of Business Research [Elsevier BV]
卷期号:144: 844-853 被引量:17
标识
DOI:10.1016/j.jbusres.2022.02.039
摘要

The food delivery market has increased rapidly in the last few years, becoming a well-established reality in the business world and a common feature of urban life. Food delivery platforms provide the end-to-end services that connect restaurants with consumers, including the delivery service to those people ordering food through an online portal. A key component of these platforms is logistics, specifically the logistics of drivers. Ideally, the number of drivers operating in an urban area should be just the right number to serve the demand in that area. Since the demand is extremely dynamic in space and time, the spatial–temporal distribution of drivers remains a challenging problem, partially solved by means of variable incentives in different city areas at different times. In this context, a precise demand prediction would avoid a local lack of drivers in some areas, and an inefficient concentration of drivers in some other areas. For this reason, we propose a deep neural network-based methodology to forecast short-term food delivery demand distribution over urban areas. The study, carried out on a real-world dataset from a food delivery company, focuses on hourly demands and frequent prediction updates. The sequential modeling approach, designed to catch rapid changes and sudden variations beyond the general demand trend, is based on a multi-target CNN-LSTM regressor trained on location-specific time series. The methodology uses a single model for all service areas simultaneously, and a single one-step volume inference for every area at each time update. The results disclose a better performance over baselines (historical estimates for the same time-area) and more traditional statistical approaches (moving averages and univariate time-series forecasting), demonstrating a promising implementation potential within an online delivery platform framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风轻云淡完成签到,获得积分10
1秒前
1秒前
3秒前
4秒前
科研通AI5应助绮户流年采纳,获得10
4秒前
5秒前
顺利的清发布了新的文献求助10
6秒前
Chengli_jian完成签到,获得积分10
7秒前
8秒前
SY发布了新的文献求助10
8秒前
清风发布了新的文献求助10
9秒前
9秒前
mark33442发布了新的文献求助10
9秒前
SYLH应助元谷雪采纳,获得10
10秒前
10秒前
11秒前
zmx123123完成签到,获得积分10
12秒前
Yu驳回了子车茗应助
13秒前
ZXK发布了新的文献求助10
15秒前
笨蛋美女完成签到 ,获得积分10
16秒前
LIO发布了新的文献求助30
18秒前
清风完成签到,获得积分10
18秒前
一一应助嘚嘚采纳,获得10
19秒前
小茗发布了新的文献求助20
21秒前
简单的铃铛完成签到 ,获得积分10
22秒前
空白完成签到,获得积分10
22秒前
脑洞疼应助pp采纳,获得10
23秒前
伟大的娃娃完成签到,获得积分10
24秒前
香蕉子骞完成签到 ,获得积分10
24秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
烟花应助科研通管家采纳,获得10
25秒前
共享精神应助科研通管家采纳,获得10
25秒前
wy.he应助科研通管家采纳,获得30
25秒前
慕青应助科研通管家采纳,获得10
25秒前
25秒前
英姑应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
852应助科研通管家采纳,获得10
26秒前
小马甲应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801574
求助须知:如何正确求助?哪些是违规求助? 3347346
关于积分的说明 10333136
捐赠科研通 3063591
什么是DOI,文献DOI怎么找? 1681885
邀请新用户注册赠送积分活动 807767
科研通“疑难数据库(出版商)”最低求助积分说明 763867