可持续发展
气候变化
地球观测
地球系统科学
行星边界
面子(社会学概念)
环境资源管理
人性
环境规划
政治学
计算机科学
业务
工程类
环境科学
社会学
地质学
海洋学
社会科学
卫星
航空航天工程
法学
作者
Claudio Persello,Jan Dirk Wegner,Ronny Hänsch,Devis Tuia,Pedram Ghamisi,Mila Koeva,Gustau Camps‐Valls
标识
DOI:10.1109/mgrs.2021.3136100
摘要
The synergistic combination of deep learning (DL) models and Earth observation (EO) promises significant advances to support the Sustainable Development Goals (SDGs). New developments and a plethora of applications are already changing the way humanity will face the challenges of our planet. This article reviews current DL approaches for EO data, along with their applications toward monitoring and achieving the SDGs most impacted by the rapid development of DL in EO. We systematically review case studies to achieve zero hunger, create sustainable cities, deliver tenure security, mitigate and adapt to climate change, and preserve biodiversity. Important societal, economic, and environmental implications are covered. Exciting times are coming when algorithms and Earth data can help in our endeavor to address the climate crisis and support more sustainable development.
科研通智能强力驱动
Strongly Powered by AbleSci AI