Insight into the Structure–Odor Relationship of Molecules: A Computational Study Based on Deep Learning

气味 人工智能 模式识别(心理学) 计算机科学 生物系统 卷积神经网络 分子描述符 多层感知器 机器学习 化学 数量结构-活动关系 人工神经网络 生物 有机化学
作者
Weichen Bo,Yuandong Yu,Ran He,Dongya Qin,Xin Xiao Zheng,Yue Wang,Botian Ding,Guizhao Liang
出处
期刊:Foods [Multidisciplinary Digital Publishing Institute]
卷期号:11 (14): 2033-2033
标识
DOI:10.3390/foods11142033
摘要

Molecules with pleasant odors, unacceptable odors, and even serious toxicity are closely related to human social life. It is impractical to identify the odors of molecules in large quantities (particularly hazardous odors) using experimental methods. Computer-aided methods have currently attracted increasing attention for the prediction of molecular odors. Here, through models based on multilayer perceptron (MLP) and physicochemical descriptors (MLP-Des), MLP and molecular fingerprint, and convolutional neural network (CNN), we conduct the two-class prediction of odor/no odor, fruity/no odor, floral/no odor, and woody/no odor, and the multi-class prediction of fruity/flowery/woody/no odor on our newly refined molecular odor datasets. We show that three kinds of predictors can robustly predict molecular odors. The MLP-Des model not only exhibits the best prediction results (the AUC values are 0.99 and 0.86 for the two- and multi-classification models, respectively) but can also well reflect the characteristics of the structure–odor relationship of molecules. The CNN model takes 2D molecular images as input and can automatically extract the structural features related to molecular odors. The proposed models are of great help for the prediction of molecular odorants, understanding the underlying relationship between chemical structure and odor perception, and the discovery of new odorous and/or hazardous molecules.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HEIKU应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
HEIKU应助科研通管家采纳,获得10
刚刚
Willer发布了新的文献求助10
刚刚
joker_k应助科研通管家采纳,获得20
刚刚
英姑应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
1秒前
joker_k应助科研通管家采纳,获得20
1秒前
安阳发布了新的文献求助20
1秒前
行云流水完成签到,获得积分10
1秒前
2秒前
Joker完成签到,获得积分10
3秒前
浔初先生发布了新的文献求助10
3秒前
4秒前
喜悦的飞机完成签到,获得积分10
6秒前
7秒前
8秒前
彭于晏应助nancy采纳,获得30
8秒前
111111完成签到,获得积分10
9秒前
10秒前
10秒前
微笑完成签到,获得积分10
10秒前
zxvcbnm完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
小蘑菇应助土豆酱采纳,获得10
13秒前
林非鹿完成签到 ,获得积分10
13秒前
香蕉觅云应助香蕉汉堡采纳,获得10
14秒前
新手完成签到 ,获得积分10
15秒前
16秒前
灯灯完成签到,获得积分10
18秒前
云下完成签到 ,获得积分10
18秒前
18秒前
任性的卿完成签到,获得积分10
19秒前
pengyang完成签到 ,获得积分10
19秒前
Hollen发布了新的文献求助10
19秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801165
求助须知:如何正确求助?哪些是违规求助? 3346853
关于积分的说明 10330624
捐赠科研通 3063166
什么是DOI,文献DOI怎么找? 1681445
邀请新用户注册赠送积分活动 807567
科研通“疑难数据库(出版商)”最低求助积分说明 763728