Autonomous Navigation System for Indoor Mobile Robots Based on a Multi-sensor Fusion Technology

计算机科学 运动规划 计算机视觉 人工智能 惯性测量装置 激光雷达 网格参考 同时定位和映射 点云 机器人 移动机器人 实时计算 构造(python库) 占用网格映射 移动机器人导航 传感器融合 路径(计算) 机器人控制 地理 遥感 程序设计语言
作者
Hongcheng Wang,Niansheng Chen,Dingyu Yang,Guangyu Fan
出处
期刊:Communications in computer and information science 卷期号:: 502-517 被引量:1
标识
DOI:10.1007/978-981-19-4546-5_39
摘要

Map construction and path planning are two critical problems for an autonomous navigation system. One traditional map construction method is to construct a 2D grid map based on LiDAR, but this method has some limits. It easily ignores 3D information which affects the accuracy of navigation. Another one is visual SLAM techniques, such as ORB-SLAM2 and S-PTAM algorithms, which can recognize 3D objects. But the visual methods perform not well because of light changes. Some conventional path planning algorithms, such as TEB and DWA, are proposed for auto-navigation. However, those algorithms are likely to go to a stalemate due to local optimum, or have the problems of collision caused by sudden speed changes in constrained environments. In order to address these issues, this paper proposes a multi-sensor fusion method for map construction and autonomous navigation. Firstly, the fusion model combines RGB-D, lidar laser, and inertial measurement unit (IMU) to construct 2D grid maps and 3D color point cloud maps in real-time. Next, we present an improved local planning algorithm (Opt_TEB) to solve the velocity mutation problem, enabling the robot to get a collision-free path. We implemented the whole system based on the ROS framework, which is a wide used an open-source robot operating system. The map construction and path planning algorithms are running on the robot, while the visualization and control modules are deployed on a back-end server. The experimental results illustrate that the multi-sensor fusion algorithm is able to conform to the original map more than the 2D grid map. Furthermore, our improved algorithm Opt_TEB performs smoothly and has no collision with obstacles in 30 trials. The navigation speed is improved by 4.2% and 11.5% compared to TEB and DWA, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助刘佳会采纳,获得10
1秒前
wltwb完成签到,获得积分10
1秒前
1秒前
YJX完成签到,获得积分10
1秒前
suliang完成签到,获得积分10
1秒前
今后应助咸鱼好翻身采纳,获得10
1秒前
2秒前
JamesPei应助GUKGO采纳,获得10
2秒前
李梁发布了新的文献求助10
2秒前
谷雨秋发布了新的文献求助10
2秒前
3秒前
NexusExplorer应助称心的寒荷采纳,获得10
3秒前
nimonimo完成签到,获得积分10
3秒前
敛茫完成签到 ,获得积分10
3秒前
Jenyy41发布了新的文献求助30
3秒前
orixero应助yangya采纳,获得10
3秒前
4秒前
缥缈的采蓝完成签到,获得积分10
4秒前
无花果应助wltwb采纳,获得10
4秒前
wzc发布了新的文献求助10
5秒前
5秒前
6秒前
周周南完成签到 ,获得积分10
6秒前
冷酷的小玉完成签到 ,获得积分10
6秒前
11完成签到,获得积分10
7秒前
顺利豆芽发布了新的文献求助10
7秒前
不配.应助YeSun采纳,获得50
7秒前
荃芏发布了新的文献求助10
7秒前
7秒前
西瓜完成签到,获得积分10
7秒前
Wendy发布了新的文献求助10
8秒前
顾矜应助君姊采纳,获得10
8秒前
8秒前
8秒前
Jasper应助沈星星采纳,获得10
9秒前
打工小房应助可靠的如之采纳,获得30
9秒前
9秒前
9秒前
英俊的铭应助外向薯片采纳,获得10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4988550
求助须知:如何正确求助?哪些是违规求助? 4237967
关于积分的说明 13201204
捐赠科研通 4031812
什么是DOI,文献DOI怎么找? 2205890
邀请新用户注册赠送积分活动 1217227
关于科研通互助平台的介绍 1135383